

hydrobricks’ documentation

Hydrobricks is a flexible hydrological modelling framework.
Its core is written in C++ and it has a Python interface.
More specifically, the processes, fluxes and solver are coded in the C++ core,
while data preparation is done with Python.
The objective is to use Python wherever possible, and in particular for data processing,
and C++ where necessary, for performance reasons.

Hydrobricks comes with pre-build model structures, but it aims at allowing structure
definition from the user through the Python API.
The existing model structures can be found under the models page.
The main components of the model are described under the basics page.

Contents:

	Getting started

	The basics
	Model structure

	Spatial structure

	Parameters

	Forcing data

	Running the model

	Outputs

	Models
	Common options

	GSM-Socont

	References

	Calibration
	Calibration/analysis using SPOTPY

	Prior distributions

	Advanced features
	Land cover evolution

	Upgrade guide
	v0.4 to v0.5

	API reference
	Models

	Components

	Submodules

	Preprocessing

	C++ binding

	Indices and tables

Getting started

Hydrobricks is distributed through PyPi and can be installed using pip:

pip install hydrobricks

Some code examples are provided in the
python/examples directory of the repo [https://github.com/hydrobricks/hydrobricks/tree/main/python/examples].
The tests [https://github.com/hydrobricks/hydrobricks/tree/main/python/tests]
can also be a useful resource to understand the behaviour of some functions.

Here is a minimum example:

import hydrobricks as hb
import hydrobricks.models as models

Model structure
socont = models.Socont(soil_storage_nb=2, surface_runoff="linear_storage",
 record_all=False)

Parameters
parameters = socont.generate_parameters()
parameters.set_values({'A': 458, 'a_snow': 1.8, 'k_slow_1': 0.9, 'k_slow_2': 0.8,
 'k_quick': 1, 'percol': 9.8})

Hydro units
hydro_units = hb.HydroUnits()
hydro_units.load_from_csv(
 'path/to/elevation_bands.csv', area_unit='m2', column_elevation='elevation',
 column_area='area')

Meteo data
forcing = hb.Forcing(hydro_units)
forcing.load_from_csv(
 'path/to/meteo.csv', column_time='Date', time_format='%d/%m/%Y',
 content={'precipitation': 'precip(mm/day)', 'temperature': 'temp(C)',
 'pet': 'pet_sim(mm/day)'})
ref_elevation = 1250 # Reference altitude for the meteo data
forcing.spatialize_temperature(ref_elevation, -0.6)
forcing.spatialize_pet()
forcing.spatialize_precipitation(ref_elevation=ref_elevation, gradient=0.05,
 correction_factor=0.75)

Obs data
obs = hb.Observations()
obs.load_from_csv('path/to/discharge.csv', column_time='Date', time_format='%d/%m/%Y',
 content={'discharge': 'Discharge (mm/d)'})

Model setup
socont.setup(spatial_structure=hydro_units, output_path=str('path/to/outputs'),
 start_date='1981-01-01', end_date='2020-12-31')

Initialize and run the model
socont.initialize_state_variables(parameters=parameters, forcing=forcing)
socont.run(parameters=parameters, forcing=forcing)

Get outlet discharge time series
sim_ts = socont.get_outlet_discharge()

Evaluate
obs_ts = obs.data_raw[0]
nse = socont.eval('nse', obs_ts)
kge_2012 = socont.eval('kge_2012', obs_ts)

print(f"nse = {nse:.3f}, kge_2012 = {kge_2012:.3f}")

The basics

Model structure

A model is composed of three main elements: bricks, processes, and fluxes.
The bricks are any component that can contain water, such as a snowpack, a glacier,
or a ground reservoir. They can contain one or more water containers.
For example, the snowpack has a snow and a liquid water container.
These bricks are assigned with processes that can extract water.
Processes are for example snowmelt, ET, or outflow according some behaviour.
The water extracted from the bricks by the processes are then transferred to fluxes,
which deliver it to other bricks, the atmosphere, or the outlet.

For now, only pre-built structures are available.
One can create a pre-built instance of a model by using the provided class (to be
considered as the blueprint) with some options.
The options and the existing models are detailed in the models page.

socont = models.Socont(soil_storage_nb=2)

Spatial structure

The catchment is discretized into sub units named hydro units.
These hydro units can represent HRUs (hydrological response units), pixels,
elevation bands, etc.
Their properties are loaded from csv files containing at minimum data on each unit area
and elevation (mean elevation of each hydro unit).
Loading such a file can be done as follows:

hydro_units = hb.HydroUnits()
hydro_units.load_from_csv(
 'path/to/file.csv', area_unit='m2', column_elevation='elevation',
 column_area='area')

The default land cover is named ground and it has no specific behaviour.
When there is more than one land cover, these can be specified.
Each hydro unit is then assigned a fraction of the provided land covers
For example, for a catchment with a pure ice glacier and a debris-covered glacier, one
then needs to provide the area for each land cover type and for each hydro unit
(more information in the Python API):

land_cover_names = ['ground', 'glacier_ice', 'glacier_debris']
land_cover_types = ['ground', 'glacier', 'glacier']

hydro_units = hb.HydroUnits(land_cover_types, land_cover_names)
hydro_units.load_from_csv(
 'path/to/file.csv', area_unit='km', column_elevation='Elevation',
 columns_areas={'ground': 'Area Non Glacier',
 'glacier_ice': 'Area Ice',
 'glacier_debris': 'Area Debris'})

The csv file containing elevation bands data can look like the following example.

Example of a csv file containing elevation bands data.

Elevation, Area Non Glacier, Area Ice, Area Debris
3986, 2.408, 0, 0
4022, 2.516, 0, 0
4058, 2.341, 0, 0.003
4094, 2.351, 0, 0.006
4130, 2.597, 0, 0.01
4166, 2.726, 0, 0.006
4202, 2.687, 0, 0.061
4238, 2.947, 0, 0.065
4274, 2.924, 0.013, 0.06
4310, 2.785, 0.019, 0.058
4346, 2.578, 0.052, 0.176
4382, 2.598, 0.072, 0.369
4418, 2.427, 0.129, 0.384
4454, 2.433, 0.252, 0.333
4490, 2.210, 0.288, 0.266
4526, 2.136, 0.341, 0.363
4562, 1.654, 0.613, 0.275

Parameters

The parameters are managed as parameter sets in an object that is an instance of the
ParameterSet class.
It means that there is a single variable containing all the parameters for a model.
Within it, different properties are defined for each parameter
(more information in the Python API):

	component: the component to which it refers to (e.g., glacier, slow_reservoir)

	name: the detailed name of the parameter (e.g., degree_day_factor)

	unit: the parameter unit (e.g., mm/d/°C)

	aliases: aliases for the parameter name; this is the short version of the
parameter name (e.g., a_snow)

	value: the value assigned to the parameter

	min: the minimum value the parameter can accept

	max: the maximum value the parameter can accept

	default_value: the parameter default value; only few parameters have default
values, such as the melting temperature, and these are usually not necessary to
calibrate

	mandatory: defines if the parameter value needs to be provided by the user
(i.e. it has no default value)

	prior: prior distribution to use for the calibration.
See the calibration page

Creating a parameter set

When using a pre-build model structure, the parameters for this structure can be
generated using the model.generate_parameters() function.
For example, the following code creates a definition of the Socont model structure and
generates the parameter set for the given structure, accounting for the options, such
as the number of soil storages. Within this parameter set, the basic attributes are
defined, such as the name, aliases, units, min/max values, etc.

socont = models.Socont(soil_storage_nb=2)
parameters = socont.generate_parameters()

Assigning the parameter values

To set parameter values, the set_values() function of the parameter set can be used
with a dictionary as argument. The dictionary can use the full parameter names
(e.g. snowpack:degree_day_factor with no space), or one of the aliases
(e.g., a_snow):

parameters.set_values({'A': 100, 'k_slow': 0.01, 'a_snow': 5})

Parameter constraints

Some constraints can be added between parameters. Some of these are built-in when the
parameter set is generated and are described in the respective model description.
For example, in GSM-Socont, the degree day for the snow must be inferior to the one for
the ice (a_snow < a_ice).

Constraints between parameters can be added by the user as follows:

parameters.define_constraint('k_slow_2', '<', 'k_slow_1')

The supported operators are: > (or gt), >= (or ge), < (or lt),
<= (or le).

On the contrary, pre-defined constraints can be removed:

parameters.remove_constraint('a_snow', '<', 'a_ice')

Parameter ranges

The parameters are usually generated with a pre-defined range.
This range is used to ensure that a provided value falls within the authorized range
and to define the boundaries for the calibration algorithm.
The pre-defined ranges can be changed as follows:

parameters.change_range('a_snow', 2, 5)

Adding data-related parameters

Data-related parameters target for example the spatialisation of the forcing data.
As these are not model-dependent, but data-dependent, they are not pre-defined by
the model and need to be added ba the user:

parameters.add_data_parameter('precip_corr_factor', 1, min_value=0.7, max_value=1.3)
parameters.add_data_parameter('precip_gradient', 0.05, min_value=0, max_value=0.2)
parameters.add_data_parameter('temp_gradients', -0.6, min_value=-1, max_value=0)

For the meaning of these parameters and the spatialisation procedures implemented in
hydrobricks, refer to the section on forcing data.

It is also possible, for certain parameters, to define monthly values and ranges:

parameters.add_data_parameter(
 'temp_gradients',
 [-0.6, -0.6, -0.6, -0.6, -0.7, -0.7, -0.8, -0.8, -0.8, -0.7, -0.7, -0.6],
 min_value=[-0.8, -0.8, -0.8, -0.8, -0.8, -0.8, -0.8, -0.8, -0.8, -0.8, -0.8, -0.8],
 max_value=[-0.3, -0.3, -0.3, -0.3, -0.3, -0.3, -0.3, -0.3, -0.3, -0.3, -0.3, -0.3])

Forcing data

The meteorological data is handled by the Forcing class.
It handles the spatialization of the weather data to create per-unit time series.
Therefore, when creating an instance of this class, the hydro units must be provided:

forcing = hb.Forcing(hydro_units)

The data, for example station time series, can the be loaded from csv files.
Multiple files can be loaded successively, or a single file can contain different
variables (as different columns).
One needs to specify which column contains the dates, their format, and which
column header represent what kind of variable.
For example (more information in the Python API):

forcing.load_from_csv(
 'path/to/forcing.csv', column_time='Date', time_format='%d/%m/%Y',
 content={'precipitation': 'precip(mm/day)', 'temperature': 'temp(C)',
 'pet': 'pet_sim(mm/day)'})

A csv file containing forcing data can look like the following example:

Example of a csv file containing forcing data.

Date,precip(mm/day),temp(C),sunshine_dur(h),pet_sim(mm/day)
01/01/1981,8.24,-0.98,0.42,0.58
02/01/1981,4.02,-3.35,0.08,0
03/01/1981,22.27,0.96,0.44,0.95
04/01/1981,28.85,-2.11,0.08,0
05/01/1981,8.89,-5.62,0.07,0.06
06/01/1981,17.49,-4.72,0.09,0
07/01/1981,8.26,-8.58,0.14,0
08/01/1981,0.14,-11.47,81.73,0
09/01/1981,0.91,-7.37,0.1,0.05
10/01/1981,0.54,-3.23,0.09,0
11/01/1981,0.02,-4.57,1.94,0
12/01/1981,2.28,-4.01,69.95,0
13/01/1981,7.03,-6.39,0.04,0
14/01/1981,9.68,-7.54,73.98,0
15/01/1981,16.23,-3.95,0.23,0.01
16/01/1981,2.77,-7.28,0.18,0.19
17/01/1981,6.49,-1.57,1.29,0.19
18/01/1981,5.53,-3.7,0.07,0
...

Spatialization

The spatialization operation needs to be specified to generate per-unit timeseries.
This definition needs information on the variable, the method to use and its parameters:

forcing.define_spatialization(
 variable='temperature', method='additive_elevation_gradient',
 ref_elevation=1250, gradient=-0.6)

As we might also want to calibrate the parameters for such operations, these can
also be specified as a reference to a parameter instead of a fixed value.
In such case, one must add a data parameter as in the following example:

forcing.define_spatialization(
 variable='temperature', method='additive_elevation_gradient',
 ref_elevation=1250, gradient='param:temp_gradients')

parameters.add_data_parameter('temp_gradients', -0.6, min_value=-1, max_value=0)

The variables supported so far are: temperature, precipitation, pet.
The methods and parameters are described in the Python API.

Running the model

Once the hydro units, parameters and
forcing defined, the model can be set up and run:

socont.setup(spatial_structure=hydro_units, output_path='/path/to/dir',
 start_date='1981-01-01', end_date='2020-12-31')

socont.run(parameters=parameters, forcing=forcing)

Then, the outlet discharge (in mm/d) can be retrieved:

sim_ts = socont.get_outlet_discharge()

More outputs can be extracted and saved to a netCDF file for further analysis:

socont.dump_outputs('/output/dir/')

The state variables can be initialized using the initialize_state_variables()
function between the setup() and the run() functions.
The initialization runs the model for the given period and saves the final state variables.
These values are then used as initial state variables for the next run:

socont.initialize_state_variables(parameters=parameters, forcing=forcing)
socont.run(parameters=parameters, forcing=forcing)

When the model is executed multiple times successively, it clears its previous states.
When the states initialization provided by initialize_state_variables() has been
used, the model resets its state variables to these saved values.

Evaluation

Some metrics can be computed by providing the observation time series (in mm/d):

Preparation of the obs data
obs = hb.Observations()
obs.load_from_csv('/path/to/obs.csv', column_time='Date', time_format='%d/%m/%Y',
 content={'discharge': 'Discharge (mm/d)'})
obs_ts = obs.data_raw[0]

nse = socont.eval('nse', obs_ts)
kge_2012 = socont.eval('kge_2012', obs_ts)

The metrics are provided by the HydroErr package [https://hydroerr.readthedocs.io] .
All the metrics listed under their website [https://hydroerr.readthedocs.io/en/stable/list_of_metrics.html]
can be used and are named according to their function names.

Outputs

The results can be accessed in different ways and with different levels of detail:

	The direct outputs from the model instance.

	A dumped netCDF file containing more details for each hydro unit.

	Other outputs such as the spatialized forcing or the SPOTPY outputs.

Direct outputs

Some outputs from the model instance are available after a model run as long as the
Python session is still alive.
The first one is the discharge time series at the outlet, provided
by get_outlet_discharge():

sim_ts = model.get_outlet_discharge()

Some outputs provide integrated values over the simulation period:

	get_total_outlet_discharge(): Integrated discharge at the outlet

	get_total_et(): Integrated ET

	get_total_water_storage_changes(): Changes in all water reservoirs between the
beginning of the period and the end.

	get_total_snow_storage_changes(): Changes in snow storage between the
beginning of the period and the end.

Dumped netCDF file

A detailed netCDF file can be dumped with model.dump_outputs('some/path').
The content of the file depends on the option record_all provided at model creation.
When True, all fluxes and states are recorded, which slows down the model execution.

The file has the following dimensions:

	time: The temporal dimension

	hydro_units: The hydro units (e.g., elevation bands)

	aggregated_values: Elements recorded at the catchment scale (lumped)

	distributed_values: Elements recorded at each hydro unit ([semi-]distributed)

	land_covers: The different land covers

It contains three important global attributes:

	labels_aggregated: The labels of the lumped elements (fluxes and states)

	labels_distributed: The labels of the distributed elements (fluxes and states)

	labels_land_covers: The labels of the land covers

For example, for the GSM-Socont model with two different glacier types provides
the following attributes:

labels_aggregated =
 "glacier-area-rain-snowmelt-storage:content",
 "glacier-area-rain-snowmelt-storage:outflow:output",
 "glacier-area-icemelt-storage:content",
 "glacier-area-icemelt-storage:outflow:output",
 "outlet";

labels_distributed =
 "ground:content",
 "ground:infiltration:output",
 "ground:runoff:output",
 "glacier-ice:content",
 "glacier-ice:outflow-rain-snowmelt:output",
 "glacier-ice:melt:output",
 "glacier-debris:content",
 "glacier-debris:outflow-rain-snowmelt:output",
 "glacier-debris:melt:output",
 "ground-snowpack:content",
 "ground-snowpack:snow",
 "ground-snowpack:melt:output",
 "glacier-ice-snowpack:content",
 "glacier-ice-snowpack:snow",
 "glacier-ice-snowpack:melt:output",
 "glacier-debris-snowpack:content",
 "glacier-debris-snowpack:snow",
 "glacier-debris-snowpack:melt:output",
 "slow-reservoir:content",
 "slow-reservoir:et:output",
 "slow-reservoir:outflow:output",
 "slow-reservoir:percolation:output",
 "slow-reservoir:overflow:output",
 "slow-reservoir-2:content",
 "slow-reservoir-2:outflow:output",
 "surface-runoff:content",
 "surface-runoff:outflow:output";

labels_land_covers =
 "ground",
 "glacier-ice",
 "glacier-debris";

Then, it provides the following variables:

	time (1D): The dates as Modified Julian Dates (days since 1858-11-17 00:00).

	hydro_units_ids (1D): The IDs of the hydro units.

	hydro_units_areas (1D): The area of the hydro units.

	sub_basin_values (2D): The time series of the aggregated elements
(c.f. labels_aggregated)

	hydro_units_values (2D): the time series of the distributed elements
(c.f. labels_distributed). Please not here the differences between:

	the fluxes (mm), i.e. output elements are already weighted by the land cover
fraction and the relative hydro unit area. Thus, these elements can be directly
summed over all hydro units to obtain the total contribution of a given
component (e.g., ice melt), even when the hydro units have different areas.

	the state variables (mm) such as content or snow elements represent
the water stored in the respective reservoirs. In this case, this value is not
weighted and cannot be summed over the catchment, but must be weighted
by the land cover fraction and the relative hydro unit area.

	land_cover_fractions (2D, optional): the temporal evolution of the land cover
fractions.

Others

Some other outputs are available:

	Dumbed forcing: the forcing object can also be saved as a netCDF file using the
forcing.create_file(). It thus contains the spatialized forcing time series.

	During the calibration procedure, SPOTPY saves all assessments in csv or sql tables.

Models

The only model structure implemented so far is GSM-Socont.

Common options

All models have the following options that can be provided at model creation:

	solver: choice of the solver to use; the options are: heun_explicit (default),
runge_kutta, and euler_explicit.

	record_all (default False): when True, the model will record all fluxes and state
values for each time step. This slows down the computations and create large output
files. Therefore, it should not be enabled during the calibration phase, but only when
one needs to analyse the behaviour of the model in details. When False, the model
will output the catchment discharge and some selected timeseries.

	land_cover_types: a list of the land cover types to use (e.g., glacier).
See the section on the spatial structure.

	land_cover_names: a list of the land cover names to use.
Each element must match the land cover types explained above.
The names are used in the model to distinguish similar land cover types, for example
when using a bare-ice glacier and a debris-covered glacier.
See the section on the spatial structure.

For example:

socont = models.Socont(solver="heun_explicit", record_all=False)

GSM-Socont

GSM-Socont is a conceptual glacio-hydrological model described in Schaefli2005.

Some basic properties are given in the following table.

Properties of the GSM-Socont model

	Spatial structure

	semi-lumped (elevation bands)

	Time step

	daily

Specific options

The implemented GSM-Socont version comes with some options:

	soil_storage_nb: 1 or 2. This is the number of soil reservoirs to consider
(the second one represents the baseflow).

	surface_runoff: socont_runoff (the original non-linear quick reservoir) or
linear_storage (a classic linear storage).

Parameters

It has the parameters listed below.

Parameters of the GSM-Socont model

	Component

	Name

	Def. value, range

	Unit

	Comments

	Precipitation (snow/rain transition)

	prec_t_start

	
0

[-2, 2]

	°C

	
Temperature below which precipitation is 100% snow.
The snow/rain transition is linear between transition_start and transition_end

Optional parameter.

Full name: snow_rain_transition: transition_start

	…

	prec_t_end

	
2

[0, 4]

	°C

	
Temperature above which precipitation is 100% liquid.

Optional parameter.

Full name: snow_rain_transition: transition_end

	Snow

	a_snow

	
–

[1, 12]

	mm/d/°C

	
Degree day snow melting factor. asnow in Schaefli2005

Full name: snowpack: degree_day_factor

	…

	melt_t_snow

	
0

[0, 5]

	°C

	
Temperature above which the snow starts to melt.

Optional parameter.

Full name: snowpack: melting_temperature

	Glacier

	a_ice (single type), a_ice_<name>, a_ice_<i>

	
–

[5, 20]

	mm/d/°C

	
With <name> being the provided name of the land cover (e.g. glacier_debris)
and <i> the number of similar land cover provided.

For example: a_ice_glacier_debris or a_ice_1.

Degree day ice melting factor. aice in Schaefli2005

Full name: <name>: degree_day_factor

	…

	melt_t_ice

	
0

[0, 5]

	°C

	
Temperature above which the ice starts to melt.

Optional parameter.

Full name: <name>: melting_temperature, with <name> being the provided name of
the land cover (e.g. glacier_debris)

	Glacier area lumped reservoir

	k_snow

	
–

[0.05, 0.25]

	1/d

	
Response factor for the glacier area lumped reservoir receiving rain and
snowmelt water. Similar to ksnow in Schaefli2005, but different units.

Full name: glacier_area_rain_snowmelt_storage: response_factor

	…

	k_ice

	
–

[0.05, 1]

	1/d

	
Response factor for the glacier area lumped reservoir receiving ice melt water.
Similar to kice in Schaefli2005, but different units.

Full name: glacier_area_icemelt_storage: response_factor

	Quick runoff (non-linear version)

	beta

	
–

[100, 30000]

	m^(4/3)/s

	
Parameter to calibrate.

Full name: surface_runoff: runoff_coefficient

	…

	J

	
–

[0, 90]

	°

	
Mean slope of the catchment. Should be based on data.

Full name: surface_runoff: slope

	Quick runoff (linear version)

	k_quick

	
–

[0.05, 1]

	1/d

	
Response factor for the quick reservoir.

Full name: surface_runoff: response_factor

	Slow reservoir

	A

	
–

[10, 3000]

	mm

	
Maximum storage capacity of the reservoir.

Full name: slow_reservoir: capacity

	…

	k_slow, k_slow_1

	
–

[0.001, 1]

	1/d

	
Response factor for the slow reservoir. Same as k in Schaefli2005,
but different units.

Full name: slow_reservoir: response_factor

	Baseflow (optional)

	percol

	
–

[0, 10]

	mm/d

	
Percolation rate from the first slow reservoir to the baseflow reservoir

Full name: slow_reservoir: percolation_rate

	…

	k_slow_2

	
–

[0.001, 1]

	1/d

	
Response factor for the baseflow reservoir.

Full name: slow_reservoir_2: response_factor

The pre-defined constraints on the parameters are defined below.

References

[Schaefli2005]
Schaefli, B., Hingray, B., Niggli, M., & Musy, A. (2005). A conceptual glacio-hydrological model for high mountainous catchments. Hydrology and Earth System Sciences Discussions, 9(1), 95–109. https://doi.org/10.5194/hessd-2-73-2005

Calibration

Calibration/analysis using SPOTPY

The calibration and sensitivity analyses are performed by the
SPOTPY package [https://spotpy.readthedocs.io/en/latest/].
The links to SPOTPY are provided by hydrobricks so that it can be used directly.

As we might not want to calibrate all parameters, those that can change have to
be specified in the parameters instance (see parameters):

parameters.allow_changing = ['a_snow', 'k_quick', 'A', 'k_slow_1', 'percol',
 'k_slow_2', 'precip_corr_factor']

Then, an instance of the SPOTPY setup can be created by providing the
model instance, the parameters, the
forcing, the observation time series, a warmup duration (period
that will not be used for the evaluation; in days), and the objective function to use:

spot_setup = hb.SpotpySetup(socont, parameters, forcing, obs, warmup=365,
 obj_func='mse')

SPOTPY only maximizes the metric value.
Thus, when the metric needs to be minimized, we need to invert the objective function:

spot_setup = hb.SpotpySetup(socont, parameters, forcing, obs, warmup=365,
 obj_func='kge_2012', invert_obj_func=True)

Once the setup defined, one can use any
SPOTPY algorithm [https://spotpy.readthedocs.io/en/latest/Algorithm_guide/].
For example, an optimization using the SCE-UA algorithm can be performed:

Select number of maximum repetitions and run spotpy
sampler = spotpy.algorithms.sceua(spot_setup, dbname='socont_SCEUA', dbformat='csv')
max_rep = 10000
sampler.sample(max_rep)

Similarly, a Monte-Carlo analysis can be performed:

sampler = spotpy.algorithms.mc(spot_setup, dbname='socont_MC', dbformat='csv',
 save_sim=False)
sampler.sample(10000)

Then, the SPOTPY results can be loaded for analysis:

Load the results
results = sampler.getdata()

Plot parameter interaction
spotpy.analyser.plot_parameterInteraction(results)
plt.tight_layout()
plt.show()

Plot posterior parameter distribution
posterior = spotpy.analyser.get_posterior(results, percentage=10)
spotpy.analyser.plot_parameterInteraction(posterior)
plt.tight_layout()
plt.show()

Prior distributions

The default prior distribution is a uniform distribution in the range provided by the
min/max parameter values.
The prior distribution can be changed before the calibration/analysis using the
set_prior() function on the parameters instance:

parameters.set_prior('a_snow', spotpy.parameter.Normal(mean=4, stddev=2))

Prebuild parameter distribution functions provided by SPOTPY: Uniform, Normal,
logNormal, Chisquare, Exponential, Gamma, Wald, Weilbull.

Advanced features

Land cover evolution

The land cover types in hydrobricks are defined by the user
(see the hydro units section).
Each hydro unit is thus internally defined by a total area and fractional land covers.
These land covers can have a dynamic evolution, externally driven.
One can provide the model with a timeseries of dates and new land cover areas, such as:

changes = behaviours.BehaviourLandCoverChange()
changes.load_from_csv(
 '/path/to/surface_changes_glacier_debris.csv',
 hydro_units, area_unit='km2', match_with='elevation'
)
model.add_behaviour(changes)

The definition of a land cover evolution does not replace the original definition of
the hydro units, which need to be also provided to the function.
The areas provided in the definition of the hydro units are the starting point of the
model, and these changes will be enforced in due time.
However, if some changes are defined for dates prior to the start of the modelling
period, these changes will also be applied.
The function changes.load_from_csv() can be called multiple times for different files.
The corresponding csv file must contain the name of the land cover to change on the
first row (for example here glacier_debris), the dates of these changes on the
second row, and then the change time series.
These changes list all hydro units that need to change; those that do not need to
change should not be listed in the file.
There are two ways to identify the hydro units: by elevation
(match_with='elevation') or by ID (match_with='id').
In the following example, these changes start with the unit elevation and contain the
time series of the area (here in km2) for every date given above.

Example of a csv file containing a land cover evolution.

bands,glacier_debris,glacier_debris,glacier_debris,glacier_debris,glacier_debris,glacier_debris,glacier_debris,glacier_debris,glacier_debris,glacier_debris,glacier_debris,glacier_debris,glacier_debris,glacier_debris,glacier_debris,glacier_debris,glacier_debris
,01/08/2020,01/08/2025,01/08/2030,01/08/2035,01/08/2040,01/08/2045,01/08/2050,01/08/2055,01/08/2060,01/08/2065,01/08/2070,01/08/2075,01/08/2080,01/08/2085,01/08/2090,01/08/2095,01/08/2100
4274,0.013,0.003,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
4310,0.019,0.009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
4346,0.052,0.042,0.032,0.022,0.012,0.002,0,0,0,0,0,0,0,0,0,0,0
4382,0.072,0.062,0.052,0.042,0.032,0.022,0.012,0.002,0,0,0,0,0,0,0,0,0
4418,0.129,0.119,0.109,0.099,0.089,0.079,0.069,0.059,0.049,0.039,0.029,0.019,0.009,0,0,0,0
4454,0.252,0.242,0.232,0.222,0.212,0.202,0.192,0.182,0.172,0.162,0.152,0.142,0.132,0.122,0.112,0.102,0.092
4490,0.288,0.278,0.268,0.258,0.248,0.238,0.228,0.218,0.208,0.198,0.188,0.178,0.168,0.158,0.148,0.138,0.128
4526,0.341,0.331,0.321,0.311,0.301,0.291,0.281,0.271,0.261,0.251,0.241,0.231,0.221,0.211,0.201,0.191,0.181
4562,0.613,0.603,0.593,0.583,0.573,0.563,0.553,0.543,0.533,0.523,0.513,0.503,0.493,0.483,0.473,0.463,0.453
4598,0.648,0.638,0.628,0.618,0.608,0.598,0.588,0.578,0.568,0.558,0.548,0.538,0.528,0.518,0.508,0.498,0.488
4634,0.618,0.608,0.598,0.588,0.578,0.568,0.558,0.548,0.538,0.528,0.518,0.508,0.498,0.488,0.478,0.468,0.458
4670,0.478,0.468,0.458,0.448,0.438,0.428,0.418,0.408,0.398,0.388,0.378,0.368,0.358,0.348,0.338,0.328,0.318
4706,0.306,0.296,0.286,0.276,0.266,0.256,0.246,0.236,0.226,0.216,0.206,0.196,0.186,0.176,0.166,0.156,0.146
4742,0.338,0.328,0.318,0.308,0.298,0.288,0.278,0.268,0.258,0.248,0.238,0.228,0.218,0.208,0.198,0.188,0.178
4778,0.199,0.189,0.179,0.169,0.159,0.149,0.139,0.129,0.119,0.109,0.099,0.089,0.079,0.069,0.059,0.049,0.039
4814,0.105,0.095,0.085,0.075,0.065,0.055,0.045,0.035,0.025,0.015,0.005,0,0,0,0,0,0
4850,0.051,0.041,0.031,0.021,0.011,0.001,0,0,0,0,0,0,0,0,0,0,0
4886,0.019,0.009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
4922,0.008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
4958,0.003,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

There is no need to specify the corresponding changes in the generic ground land
cover as it will be automatically computed to preserve the total hydro unit area.

Upgrade guide

v0.4 to v0.5

Breaking change:

	Removing hyphens for underscores. Any component (including land cover elements) have to use underscores and not hyphens (e.g., glacier_ice instead of glacier-ice, slow_reservoir instead of slow-reservoir).

API reference

	Models

	Components

	Submodules

	Preprocessing

	C++ binding

Indices and tables

	Index

	Module Index

Models

Base model

Socont

	
class hydrobricks.models.socont.Socont(name='socont', **kwargs)

	Bases: Model

Socont model implementation

	
generate_parameters()

	

Components

HydroUnits

	
class hydrobricks.HydroUnits(land_cover_types=None, land_cover_names=None)

	Bases: object

Class for the hydro units

	
create_file(path)

	Create a file containing the hydro unit properties. Such a file can be used in
the command-line version of hydrobricks.

	Parameters:

	path (str) – Path of the file to create.

	
get_ids()

	Get the hydro unit ids.

	
load_from_csv(path, area_unit, column_elevation=None, column_area=None, column_fractions=None, columns_areas=None)

	Read hydro units properties from csv file.

	Parameters:

	
	path (str|Path) – Path to the csv file containing hydro units data.

	area_unit (str) – Unit for the area values: “m2” or “km2”

	column_elevation (str) – Column name containing the elevation values in [m] (optional).

	column_area (str) – Column name containing the area values (optional).

	column_fractions (dict) – Column name containing the area fraction values for each land cover
(optional).

	columns_areas (dict) – Column name containing the area values for each land cover (optional).

ParameterSet

	
class hydrobricks.ParameterSet

	Bases: object

Class for the parameter sets

	
add_data_parameter(name, value=None, min_value=None, max_value=None, unit=None)

	Add a parameter related to the data.

	Parameters:

	
	name (str) – The name of the parameter.

	value (float/list) – The parameter value.

	min_value (float/list) – Minimum value allowed for the parameter.

	max_value (float/list) – Maximum value allowed for the parameter.

	unit (str) – The unit of the parameter.

	
property allow_changing

	

	
change_range(parameter, min_value, max_value)

	Change the value range of a parameter.

	Parameters:

	
	parameter (str) – Name (or alias) of the parameter

	min_value – New minimum value

	max_value – New maximum value

	
constraints_satisfied() → bool

	Check if the constraints between parameters are satisfied.

	Return type:

	True is constraints are satisfied, False otherwise.

	
create_file(directory, name, file_type='both')

	Create a configuration file containing the parameter values.

Such a file can be used when using the command-line version of hydrobricks. It
contains the model parameter values.

	Parameters:

	
	directory (str) – The directory to write the file.

	name (str) – The name of the generated file.

	file_type (file_type) – The type of file to generate: ‘json’, ‘yaml’, or ‘both’.

	
define_constraint(parameter_1, operator, parameter_2)

	Defines a constraint between 2 parameters (e.g., paramA > paramB)

	Parameters:

	
	parameter_1 (str) – The name of the first parameter.

	operator (str) – The operator (e.g. ‘<=’).

	parameter_2 (str) – The name of the second parameter.

Examples

parameter_set.define_constraint(‘paramA’, ‘>=’, ‘paramB’)

	
define_parameter(component, name, unit=None, aliases=None, min_value=None, max_value=None, default_value=None, mandatory=True)

	Define a parameter by setting its properties.

	Parameters:

	
	component (str) – The component (brick) name to which the parameter refer (e.g., snowpack,
glacier, surface-runoff).

	name (str) – The name of the parameter in the C++ code of hydrobricks (e.g.,
degree_day_factor, response_factor).

	unit (str) – The unit of the parameter.

	aliases (list) – Aliases to the parameter name, such as names used in other implementations
(e.g., kgl, an). Aliases must be unique.

	min_value (float/list) – Minimum value allowed for the parameter.

	max_value (float/list) – Maximum value allowed for the parameter.

	default_value (float/list) – The parameter default value.

	mandatory (bool) – If the parameter needs to be defined or if it can silently use the
default value.

	
get(name)

	Get the value of a parameter by name.

	Parameters:

	name (str) – The name of the parameter.

	Return type:

	The parameter value.

	
get_for_spotpy()

	Get the parameters to assess ready to be used in spotpy.

	Return type:

	A list of the parameters as spotpy objects.

	
get_model_parameters()

	Get the model-only parameters (excluding data-related parameters).

	
has(name)

	Check if a parameter exists.

	Parameters:

	name (str) – The name of the parameter.

	Return type:

	True if found, False otherwise.

	
is_for_forcing(parameter_name)

	Check if the parameter relates to forcing data.

	Parameters:

	parameter_name – The name of the parameter.

	Return type:

	True if relates to forcing data, False otherwise.

	
list_constraints()

	List the constraints currently defined.

	
needs_random_forcing()

	Check if one of the parameters to assess involves the meteorological data.

	Return type:

	True if one of the parameters to assess involves the meteorological data.

	
range_satisfied() → bool

	Check if the parameter value ranges are satisfied.

	Return type:

	True is ranges are satisfied, False otherwise.

	
remove_constraint(parameter_1, operator, parameter_2)

	Removes a constraint between 2 parameters (e.g., paramA > paramB)

	Parameters:

	
	parameter_1 (str) – The name of the first parameter.

	operator (str) – The operator (e.g. ‘<=’).

	parameter_2 (str) – The name of the second parameter.

Examples

parameter_set.remove_constraint(‘paramA’, ‘>=’, ‘paramB’)

	
set_prior(parameter, prior)

	Change the value range of a parameter.

	Parameters:

	
	parameter (str) – Name (or alias) of the parameter

	prior (spotpy.parameter) – The prior distribution (instance of spotpy.parameter)

	
set_random_values(parameters)

	Set the provided parameter to random values.

	Parameters:

	parameters (list) – The name or alias of the parameters to set to random values.
Example: [‘kr’, ‘A’]

	Return type:

	A dataframe with the assigned parameter values.

	
set_values(values, check_range=True, allow_adapt=False)

	Set the parameter values.

	Parameters:

	
	values (dict) – The values must be provided as a dictionary with the parameter name with the
related component or one of its aliases as the key.
Example: {‘k’: 32, ‘A’: 300} or {‘slow-reservoir:capacity’: 300}

	check_range (bool) – Check that the parameter value falls into the allowed range.

	allow_adapt (bool) – Allow the parameter values to be adapted to enforce defined constraints
(e.g.: min, max).

Forcing

	
class hydrobricks.Forcing(hydro_units)

	Bases: TimeSeries

Class for forcing data

	
apply_defined_spatialization(parameters, parameters_to_apply=None)

	Apply the spatialization operations defined by define_spatialization().

	Parameters:

	
	parameters (ParameterSet) – The parameter object instance.

	parameters_to_apply (list) – A list of parameters to apply. The spatialization will only be applied for
the variables related to parameters in this list. If None, all variables are
spatialized.

	
create_file(path, max_compression=False)

	Read hydro units properties from csv file.

	Parameters:

	
	path (str) – Path of the file to create.

	max_compression (bool) – Option to allow maximum compression for data in file.

	
define_spatialization(**kwargs)

	Define the spatialization operations.

	Parameters:

	kwargs – All the parameters needed by the function spatialize() to perform the
spatialization for the given forcing variable.

	
get_total_precipitation()

	

	
spatialize(variable, method='constant', ref_elevation=None, gradient=0, gradient_1=0, gradient_2=0, elevation_threshold=None, correction_factor=None)

	Spatializes the provided variable to all hydro units using the defined method.

	Parameters:

	
	variable (str) – Name of the variable to spatialize.

	method (str) – Name of the method to use. Can be:
* constant: the same value will be used
* additive_elevation_gradient: use of an additive elevation gradient that

is either constant or changes for every month.
Parameters: ‘ref_elevation’, ‘gradient’.

	multiplicative_elevation_gradient: use of a multiplicative elevation
gradient that is either constant or changes for every month.
Parameters: ‘ref_elevation’, ‘gradient’.

	multiplicative_elevation_threshold_gradients: same as
multiplicative_elevation_gradient, but with an elevation threshold with a
gradient below and a gradient above.
Parameters: ‘ref_elevation’, ‘gradient’, ‘gradient_2’,
‘elevation_threshold’

	ref_elevation (float) – Reference elevation.
For method(s): ‘elevation_gradient’

	gradient (float/list) – Gradient of the variable to apply per 100m (e.g., °C/100m).
Can be a unique value or a list providing a value for every month.
For method(s): ‘elevation_gradient’, ‘elevation_multi_gradients’

	gradient_1 (float/list) – Same as parameter ‘gradient’

	gradient_2 (float/list) – Gradient of the variable to apply per 100m (e.g., °C/100m) for the units
above the elevation threshold defined by ‘elevation_threshold’.
For method(s): ‘elevation_multi_gradients’

	elevation_threshold (int/float) – Threshold elevation to switch from gradient to gradient_2

	correction_factor (float) – Correction factor to apply to the precipitation data before spatialization

	
spatialize_pet(ref_elevation=None, gradient=0)

	Spatializes the PET using a gradient that is either constant or changes for
every month.

	Parameters:

	
	ref_elevation (float) – Elevation of the reference station.

	gradient (float/list) – Gradient [mm/100m] to compute the PET for every hydro unit.
Can be a unique value or a list providing a value for every month.

	
spatialize_precipitation(ref_elevation, gradient=None, gradient_1=None, gradient_2=None, elevation_threshold=None, correction_factor=None)

	Spatializes the precipitation using a single gradient for the full elevation
range or a two-gradients approach with an elevation threshold.

	Parameters:

	
	ref_elevation (float) – Elevation of the reference station.

	gradient (float) – Precipitation gradient (ratio) per 100 m of altitude.

	gradient_1 (float) – Same as parameter ‘gradient’

	gradient_2 (float) – Precipitation gradient (ratio) per 100 m of altitude for the units above
the threshold elevation (optional).

	elevation_threshold (float) – Threshold to switch from gradient 1 to gradient 2 (optional).

	correction_factor (float) – Correction factor to apply to the precipitation data before spatialization

	
spatialize_temperature(ref_elevation, lapse)

	Spatializes the temperature using a temperature lapse that is either constant
or changes for every month.

	Parameters:

	
	ref_elevation (float) – Elevation of the reference station.

	lapse (float/list) – Temperature lapse [°C/100m] to compute the temperature for every hydro unit.
Can be a unique value or a list providing a value for every month.

Observations

	
class hydrobricks.Observations

	Bases: TimeSeries

Class for forcing data

Submodules

hydrobricks.plotting module

	
hydrobricks.plotting.plot_hydro_units_values(results, index, units, units_labels)

	

	
hydrobricks.plotting.plot_precip_per_unit(units_precip, hydro_units)

	

hydrobricks.utils module

	
class hydrobricks.utils.Timer(text=None)

	Bases: object

Timer to time code execution. Based on: https://pypi.org/project/codetiming/

	
start()

	Start a new timer.

	
stop(show_time=True)

	Stop the timer, and report the elapsed time.

	
hydrobricks.utils.area_in_m2(area, unit)

	

	
hydrobricks.utils.date_as_mjd(date)

	

	
hydrobricks.utils.days_to_hours_mins(days)

	Transform a number of days to hours and minutes

	
hydrobricks.utils.dump_config_file(content, directory, name, file_type='yaml')

	

	
hydrobricks.utils.jd_to_date(jd)

	Transform julian date numbers to year, month and day (array-based).
From https://gist.github.com/jiffyclub/1294443

	
hydrobricks.utils.mjd_to_datetime(mjd)

	Transform modified julian dates to datetime instances (array-based).

	
hydrobricks.utils.validate_kwargs(kwargs, allowed_kwargs)

	Checks the keyword arguments against a set of allowed keys.

Preprocessing

Compute elevation bands

	
class hydrobricks.preprocessing.catchment.Catchment(outline=None)

	Bases: object

Creation of catchment-related data

	
extract_dem(dem_path) → bool

	Extract the DEM data for the catchment. Does not handle change in coordinates.

	Parameters:

	dem_path (str|Path) – Path of the DEM file.

	Return type:

	True if successful, False otherwise.

	
get_elevation_bands(method='isohypse', number=100, distance=50)

	Construction of the elevation bands based on the chosen method.

	Parameters:

	
	method (str) – The method to build the elevation bands:
‘isohypse’ = fixed contour intervals (provide the ‘distance’ parameter)
‘quantiles’ = quantiles of the catchment area (same surface;
provide the ‘number’ parameter)

	number (int) – Number of bands to create when using the ‘quantiles’ method.

	distance (int) – Distance (m) between the contour lines when using the ‘isohypse’ method.

	Return type:

	A dataframe with the elevation bands.

	
get_mean_elevation()

	Get the catchment mean elevation.

	Return type:

	The catchment mean elevation.

C++ binding

This reference only describes the C++ Python binding. For a full documentation of the
C++ code, please refer to the C++ reference [https://hydrobricks.github.io/hydrobricks-doc-core/].

hydrobricks Python interface

ModelHydro class

	
class _hydrobricks.ModelHydro

	Bases: pybind11_object

	
add_behaviour(self: _hydrobricks.ModelHydro, behaviour: Behaviour) → bool

	Adding a behaviour to the model.

	
add_time_series(self: _hydrobricks.ModelHydro, time_series: _hydrobricks.TimeSeries) → bool

	Adding a time series to the model.

	
attach_time_series_to_hydro_units(self: _hydrobricks.ModelHydro) → bool

	Attach the time series.

	
clear_time_series(self: _hydrobricks.ModelHydro) → None

	Clear time series. Use only if the time series were created with ModelHydro::ClearTimeSeries.

	
create_time_series(self: _hydrobricks.ModelHydro, data_name: str, time: numpy.ndarray[numpy.float64[m, 1]], ids: numpy.ndarray[numpy.int32[m, 1]], data: numpy.ndarray[numpy.float64[m, n]]) → bool

	Create a time series and add it to the model.

	
dump_outputs(self: _hydrobricks.ModelHydro, path: str) → bool

	Dump the model outputs to file.

	
forcing_loaded(self: _hydrobricks.ModelHydro) → bool

	Check if the forcing data were loaded.

	
get_behaviour_items_nb(self: _hydrobricks.ModelHydro) → int

	Get the number of behaviour items.

	
get_behaviours_nb(self: _hydrobricks.ModelHydro) → int

	Get the number of behaviours.

	
get_outlet_discharge(self: _hydrobricks.ModelHydro) → numpy.ndarray[numpy.float64[m, 1]]

	Get the outlet discharge.

	
get_total_et(self: _hydrobricks.ModelHydro) → float

	Get the total amount of water lost by evapotranspiration.

	
get_total_outlet_discharge(self: _hydrobricks.ModelHydro) → float

	Get the outlet discharge total.

	
get_total_snow_storage_changes(self: _hydrobricks.ModelHydro) → float

	Get the total change in snow storage.

	
get_total_water_storage_changes(self: _hydrobricks.ModelHydro) → float

	Get the total change in water storage.

	
init_with_basin(self: _hydrobricks.ModelHydro, model_settings: _hydrobricks.SettingsModel, basin_settings: _hydrobricks.SettingsBasin) → bool

	Initialize the model and create the sub basin.

	
is_ok(self: _hydrobricks.ModelHydro) → bool

	Check if the model is correctly set up.

	
reset(self: _hydrobricks.ModelHydro) → None

	Reset the model before another run.

	
run(self: _hydrobricks.ModelHydro) → bool

	Run the model.

	
save_as_initial_state(self: _hydrobricks.ModelHydro) → None

	Save the model state as initial conditions.

	
update_parameters(self: _hydrobricks.ModelHydro, model_settings: _hydrobricks.SettingsModel) → None

	Update the parameters with the provided values.

SettingsModel class

	
class _hydrobricks.SettingsModel

	Bases: pybind11_object

	
generate_socont_structure(self: _hydrobricks.SettingsModel, land_cover_types: List[str], land_cover_names: List[str], soil_storage_nb: int = 1, surface_runoff: str = 'socont_runoff') → bool

	Generate the GSM-SOCONT structure.

	
log_all(self: _hydrobricks.SettingsModel, log_all: bool = True) → None

	Logging all components.

	
set_parameter(self: _hydrobricks.SettingsModel, component: str, name: str, value: float) → bool

	Setting one of the model parameter.

	
set_solver(self: _hydrobricks.SettingsModel, name: str) → None

	Set the solver.

	
set_timer(self: _hydrobricks.SettingsModel, start_date: str, end_date: str, time_step: int, time_step_unit: str) → None

	Set the modelling time properties.

SettingsBasin class

	
class _hydrobricks.SettingsBasin

	Bases: pybind11_object

	
add_hydro_unit(self: _hydrobricks.SettingsBasin, id: int, area: float, elevation: float) → None

	Add a hydro unit to the spatial structure.

	
add_land_cover(self: _hydrobricks.SettingsBasin, name: str, type: str, fraction: float) → None

	Add a land cover element.

SubBasin class

	
class _hydrobricks.SubBasin

	Bases: pybind11_object

	
init(self: _hydrobricks.SubBasin, spatial_structure: _hydrobricks.SettingsBasin) → bool

	Initialize the basin.

Parameter class

	
class _hydrobricks.Parameter

	Bases: pybind11_object

	
get_name(self: _hydrobricks.Parameter) → str

	Get the parameter name.

	
get_value(self: _hydrobricks.Parameter) → float

	Get the parameter value.

	
property name

	

	
set_name(self: _hydrobricks.Parameter, arg0: str) → None

	Set the parameter name.

	
set_value(self: _hydrobricks.Parameter, arg0: float) → None

	Set the parameter value.

	
property value

	

	
class _hydrobricks.ParameterVariableYearly

	Bases: Parameter

	
set_values(self: _hydrobricks.ParameterVariableYearly, year_start: int, year_end: int, values: List[float]) → bool

	Set the parameter values.

TimeSeries class

	
class _hydrobricks.TimeSeries

	Bases: pybind11_object

	
static create(data_name: str, time: numpy.ndarray[numpy.float64[m, 1]], ids: numpy.ndarray[numpy.int32[m, 1]], data: numpy.ndarray[numpy.float64[m, n]]) → _hydrobricks.TimeSeries

	

 Python Module Index

 _ |
 h

 		 	

 		
 _	

 	
 	
 _hydrobricks	

 		 	

 		
 h	

 	[image: -]
 	
 hydrobricks	

 	
 	
 hydrobricks.models	

 	
 	
 hydrobricks.models.socont	

 	
 	
 hydrobricks.plotting	

 	
 	
 hydrobricks.preprocessing	

 	
 	
 hydrobricks.preprocessing.catchment	

 	
 	
 hydrobricks.utils	

Index

 _
 | A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V

_

 	
 	
 _hydrobricks

 	module

A

 	
 	add_behaviour() (_hydrobricks.ModelHydro method)

 	add_data_parameter() (hydrobricks.ParameterSet method)

 	add_hydro_unit() (_hydrobricks.SettingsBasin method)

 	add_land_cover() (_hydrobricks.SettingsBasin method)

 	
 	add_time_series() (_hydrobricks.ModelHydro method)

 	allow_changing (hydrobricks.ParameterSet property)

 	apply_defined_spatialization() (hydrobricks.Forcing method)

 	area_in_m2() (in module hydrobricks.utils)

 	attach_time_series_to_hydro_units() (_hydrobricks.ModelHydro method)

C

 	
 	Catchment (class in hydrobricks.preprocessing.catchment)

 	change_range() (hydrobricks.ParameterSet method)

 	clear_time_series() (_hydrobricks.ModelHydro method)

 	constraints_satisfied() (hydrobricks.ParameterSet method)

 	
 	create() (_hydrobricks.TimeSeries static method)

 	create_file() (hydrobricks.Forcing method)

 	(hydrobricks.HydroUnits method)

 	(hydrobricks.ParameterSet method)

 	create_time_series() (_hydrobricks.ModelHydro method)

D

 	
 	date_as_mjd() (in module hydrobricks.utils)

 	days_to_hours_mins() (in module hydrobricks.utils)

 	define_constraint() (hydrobricks.ParameterSet method)

 	
 	define_parameter() (hydrobricks.ParameterSet method)

 	define_spatialization() (hydrobricks.Forcing method)

 	dump_config_file() (in module hydrobricks.utils)

 	dump_outputs() (_hydrobricks.ModelHydro method)

E

 	
 	extract_dem() (hydrobricks.preprocessing.catchment.Catchment method)

F

 	
 	Forcing (class in hydrobricks)

 	
 	forcing_loaded() (_hydrobricks.ModelHydro method)

G

 	
 	generate_parameters() (hydrobricks.models.socont.Socont method)

 	generate_socont_structure() (_hydrobricks.SettingsModel method)

 	get() (hydrobricks.ParameterSet method)

 	get_behaviour_items_nb() (_hydrobricks.ModelHydro method)

 	get_behaviours_nb() (_hydrobricks.ModelHydro method)

 	get_elevation_bands() (hydrobricks.preprocessing.catchment.Catchment method)

 	get_for_spotpy() (hydrobricks.ParameterSet method)

 	get_ids() (hydrobricks.HydroUnits method)

 	get_mean_elevation() (hydrobricks.preprocessing.catchment.Catchment method)

 	
 	get_model_parameters() (hydrobricks.ParameterSet method)

 	get_name() (_hydrobricks.Parameter method)

 	get_outlet_discharge() (_hydrobricks.ModelHydro method)

 	get_total_et() (_hydrobricks.ModelHydro method)

 	get_total_outlet_discharge() (_hydrobricks.ModelHydro method)

 	get_total_precipitation() (hydrobricks.Forcing method)

 	get_total_snow_storage_changes() (_hydrobricks.ModelHydro method)

 	get_total_water_storage_changes() (_hydrobricks.ModelHydro method)

 	get_value() (_hydrobricks.Parameter method)

H

 	
 	has() (hydrobricks.ParameterSet method)

 	
 hydrobricks

 	module

 	
 hydrobricks.models

 	module

 	
 hydrobricks.models.socont

 	module

 	
 hydrobricks.plotting

 	module

 	
 	
 hydrobricks.preprocessing

 	module

 	
 hydrobricks.preprocessing.catchment

 	module

 	
 hydrobricks.utils

 	module

 	HydroUnits (class in hydrobricks)

I

 	
 	init() (_hydrobricks.SubBasin method)

 	init_with_basin() (_hydrobricks.ModelHydro method)

 	
 	is_for_forcing() (hydrobricks.ParameterSet method)

 	is_ok() (_hydrobricks.ModelHydro method)

J

 	
 	jd_to_date() (in module hydrobricks.utils)

L

 	
 	list_constraints() (hydrobricks.ParameterSet method)

 	
 	load_from_csv() (hydrobricks.HydroUnits method)

 	log_all() (_hydrobricks.SettingsModel method)

M

 	
 	mjd_to_datetime() (in module hydrobricks.utils)

 	ModelHydro (class in _hydrobricks)

 	
 module

 	_hydrobricks

 	hydrobricks

 	hydrobricks.models

 	hydrobricks.models.socont

 	hydrobricks.plotting

 	hydrobricks.preprocessing

 	hydrobricks.preprocessing.catchment

 	hydrobricks.utils

N

 	
 	name (_hydrobricks.Parameter property)

 	
 	needs_random_forcing() (hydrobricks.ParameterSet method)

O

 	
 	Observations (class in hydrobricks)

P

 	
 	Parameter (class in _hydrobricks)

 	ParameterSet (class in hydrobricks)

 	
 	ParameterVariableYearly (class in _hydrobricks)

 	plot_hydro_units_values() (in module hydrobricks.plotting)

 	plot_precip_per_unit() (in module hydrobricks.plotting)

R

 	
 	range_satisfied() (hydrobricks.ParameterSet method)

 	remove_constraint() (hydrobricks.ParameterSet method)

 	
 	reset() (_hydrobricks.ModelHydro method)

 	run() (_hydrobricks.ModelHydro method)

S

 	
 	save_as_initial_state() (_hydrobricks.ModelHydro method)

 	set_name() (_hydrobricks.Parameter method)

 	set_parameter() (_hydrobricks.SettingsModel method)

 	set_prior() (hydrobricks.ParameterSet method)

 	set_random_values() (hydrobricks.ParameterSet method)

 	set_solver() (_hydrobricks.SettingsModel method)

 	set_timer() (_hydrobricks.SettingsModel method)

 	set_value() (_hydrobricks.Parameter method)

 	set_values() (_hydrobricks.ParameterVariableYearly method)

 	(hydrobricks.ParameterSet method)

 	
 	SettingsBasin (class in _hydrobricks)

 	SettingsModel (class in _hydrobricks)

 	Socont (class in hydrobricks.models.socont)

 	spatialize() (hydrobricks.Forcing method)

 	spatialize_pet() (hydrobricks.Forcing method)

 	spatialize_precipitation() (hydrobricks.Forcing method)

 	spatialize_temperature() (hydrobricks.Forcing method)

 	start() (hydrobricks.utils.Timer method)

 	stop() (hydrobricks.utils.Timer method)

 	SubBasin (class in _hydrobricks)

T

 	
 	Timer (class in hydrobricks.utils)

 	
 	TimeSeries (class in _hydrobricks)

U

 	
 	update_parameters() (_hydrobricks.ModelHydro method)

V

 	
 	validate_kwargs() (in module hydrobricks.utils)

 	
 	value (_hydrobricks.Parameter property)

 nav.xhtml

 Table of Contents

 		
 hydrobricks’ documentation

 		
 Getting started

 		
 The basics

 		
 Model structure

 		
 Spatial structure

 		
 Parameters

 		
 Creating a parameter set

 		
 Assigning the parameter values

 		
 Parameter constraints

 		
 Parameter ranges

 		
 Adding data-related parameters

 		
 Forcing data

 		
 Spatialization

 		
 Running the model

 		
 Evaluation

 		
 Outputs

 		
 Direct outputs

 		
 Dumped netCDF file

 		
 Others

 		
 Models

 		
 Common options

 		
 GSM-Socont

 		
 Specific options

 		
 Parameters

 		
 References

 		
 Calibration

 		
 Calibration/analysis using SPOTPY

 		
 Prior distributions

 		
 Advanced features

 		
 Land cover evolution

 		
 Upgrade guide

 		
 v0.4 to v0.5

 		
 API reference

 		
 Models

 		
 Base model

 		
 Socont

 		
 Components

 		
 HydroUnits

 		
 ParameterSet

 		
 Forcing

 		
 Observations

 		
 Submodules

 		
 hydrobricks.plotting module

 		
 hydrobricks.utils module

 		
 Preprocessing

 		
 Compute elevation bands

 		
 C++ binding

 		
 ModelHydro class

 		
 SettingsModel class

 		
 SettingsBasin class

 		
 SubBasin class

 		
 Parameter class

 		
 TimeSeries class

 		
 Indices and tables

_static/plus.png

_static/file.png

_static/minus.png

