
hydrobricks
Release 0.4.11

Pascal Horton

Jul 06, 2023





CONTENTS:

1 Getting started 3

2 The basics 5
2.1 Model structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Spatial structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Forcing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Running the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Models 13
3.1 Common options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 GSM-Socont . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Calibration 17
4.1 Calibration/analysis using SPOTPY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Prior distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Advanced features 19
5.1 Land cover evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 Upgrade guide 21
6.1 v0.4 to v0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

7 API reference 23
7.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.3 Submodules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.4 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.5 C++ binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

8 Indices and tables 35

Bibliography 37

Python Module Index 39

Index 41

i



ii



hydrobricks, Release 0.4.11

Hydrobricks is a flexible hydrological modelling framework. Its core is written in C++ and it has a Python interface.
More specifically, the processes, fluxes and solver are coded in the C++ core, while data preparation is done with Python.
The objective is to use Python wherever possible, and in particular for data processing, and C++ where necessary, for
performance reasons.

Hydrobricks comes with pre-build model structures, but it aims at allowing structure definition from the user through
the Python API. The existing model structures can be found under the models page. The main components of the model
are described under the basics page.

CONTENTS: 1



hydrobricks, Release 0.4.11

2 CONTENTS:



CHAPTER

ONE

GETTING STARTED

Hydrobricks is distributed through PyPi and can be installed using pip:

pip install hydrobricks

Some code examples are provided in the python/examples directory of the repo. The tests can also be a useful resource
to understand the behaviour of some functions.

Here is a minimum example:

import hydrobricks as hb
import hydrobricks.models as models

# Model structure
socont = models.Socont(soil_storage_nb=2, surface_runoff="linear_storage",

record_all=False)

# Parameters
parameters = socont.generate_parameters()
parameters.set_values({'A': 458, 'a_snow': 1.8, 'k_slow_1': 0.9, 'k_slow_2': 0.8,

'k_quick': 1, 'percol': 9.8})

# Hydro units
hydro_units = hb.HydroUnits()
hydro_units.load_from_csv(

'path/to/elevation_bands.csv', area_unit='m2', column_elevation='elevation',
column_area='area')

# Meteo data
forcing = hb.Forcing(hydro_units)
forcing.load_from_csv(

'path/to/meteo.csv', column_time='Date', time_format='%d/%m/%Y',
content={'precipitation': 'precip(mm/day)', 'temperature': 'temp(C)',

'pet': 'pet_sim(mm/day)'})
ref_elevation = 1250 # Reference altitude for the meteo data
forcing.spatialize_temperature(ref_elevation, -0.6)
forcing.spatialize_pet()
forcing.spatialize_precipitation(ref_elevation=ref_elevation, gradient=0.05,

correction_factor=0.75)

# Obs data
obs = hb.Observations()

(continues on next page)

3

https://github.com/hydrobricks/hydrobricks/tree/main/python/examples
https://github.com/hydrobricks/hydrobricks/tree/main/python/tests


hydrobricks, Release 0.4.11

(continued from previous page)

obs.load_from_csv('path/to/discharge.csv', column_time='Date', time_format='%d/%m/%Y',
content={'discharge': 'Discharge (mm/d)'})

# Model setup
socont.setup(spatial_structure=hydro_units, output_path=str('path/to/outputs'),

start_date='1981-01-01', end_date='2020-12-31')

# Initialize and run the model
socont.initialize_state_variables(parameters=parameters, forcing=forcing)
socont.run(parameters=parameters, forcing=forcing)

# Get outlet discharge time series
sim_ts = socont.get_outlet_discharge()

# Evaluate
obs_ts = obs.data_raw[0]
nse = socont.eval('nse', obs_ts)
kge_2012 = socont.eval('kge_2012', obs_ts)

print(f"nse = {nse:.3f}, kge_2012 = {kge_2012:.3f}")

4 Chapter 1. Getting started



CHAPTER

TWO

THE BASICS

2.1 Model structure

A model is composed of three main elements: bricks, processes, and fluxes. The bricks are any component that can
contain water, such as a snowpack, a glacier, or a ground reservoir. They can contain one or more water containers.
For example, the snowpack has a snow and a liquid water container. These bricks are assigned with processes that
can extract water. Processes are for example snowmelt, ET, or outflow according some behaviour. The water extracted
from the bricks by the processes are then transferred to fluxes, which deliver it to other bricks, the atmosphere, or the
outlet.

For now, only pre-built structures are available. One can create a pre-built instance of a model by using the provided
class (to be considered as the blueprint) with some options. The options and the existing models are detailed in the
models page.

socont = models.Socont(soil_storage_nb=2)

2.2 Spatial structure

The catchment is discretized into sub units named hydro units. These hydro units can represent HRUs (hydrological
response units), pixels, elevation bands, etc. Their properties are loaded from csv files containing at minimum data on
each unit area and elevation (mean elevation of each hydro unit). Loading such a file can be done as follows:

hydro_units = hb.HydroUnits()
hydro_units.load_from_csv(
'path/to/file.csv', area_unit='m2', column_elevation='elevation',
column_area='area')

The default land cover is named ground and it has no specific behaviour. When there is more than one land cover, these
can be specified. Each hydro unit is then assigned a fraction of the provided land covers For example, for a catchment
with a pure ice glacier and a debris-covered glacier, one then needs to provide the area for each land cover type and for
each hydro unit (more information in the Python API):

land_cover_names = ['ground', 'glacier_ice', 'glacier_debris']
land_cover_types = ['ground', 'glacier', 'glacier']

hydro_units = hb.HydroUnits(land_cover_types, land_cover_names)
hydro_units.load_from_csv(
'path/to/file.csv', area_unit='km', column_elevation='Elevation',
columns_areas={'ground': 'Area Non Glacier',

(continues on next page)

5



hydrobricks, Release 0.4.11

(continued from previous page)

'glacier_ice': 'Area Ice',
'glacier_debris': 'Area Debris'})

The csv file containing elevation bands data can look like the following example.

Listing 1: Example of a csv file containing elevation bands data.

Elevation, Area Non Glacier, Area Ice, Area Debris
3986, 2.408, 0, 0
4022, 2.516, 0, 0
4058, 2.341, 0, 0.003
4094, 2.351, 0, 0.006
4130, 2.597, 0, 0.01
4166, 2.726, 0, 0.006
4202, 2.687, 0, 0.061
4238, 2.947, 0, 0.065
4274, 2.924, 0.013, 0.06
4310, 2.785, 0.019, 0.058
4346, 2.578, 0.052, 0.176
4382, 2.598, 0.072, 0.369
4418, 2.427, 0.129, 0.384
4454, 2.433, 0.252, 0.333
4490, 2.210, 0.288, 0.266
4526, 2.136, 0.341, 0.363
4562, 1.654, 0.613, 0.275

2.3 Parameters

The parameters are managed as parameter sets in an object that is an instance of the ParameterSet class. It means
that there is a single variable containing all the parameters for a model. Within it, different properties are defined for
each parameter (more information in the Python API):

• component: the component to which it refers to (e.g., glacier, slow_reservoir)

• name: the detailed name of the parameter (e.g., degree_day_factor)

• unit: the parameter unit (e.g., mm/d/°C)

• aliases: aliases for the parameter name; this is the short version of the parameter name (e.g., a_snow)

• value: the value assigned to the parameter

• min: the minimum value the parameter can accept

• max: the maximum value the parameter can accept

• default_value: the parameter default value; only few parameters have default values, such as the melting tem-
perature, and these are usually not necessary to calibrate

• mandatory: defines if the parameter value needs to be provided by the user (i.e. it has no default value)

• prior: prior distribution to use for the calibration. See the calibration page

6 Chapter 2. The basics



hydrobricks, Release 0.4.11

2.3.1 Creating a parameter set

When using a pre-build model structure, the parameters for this structure can be generated using the model.
generate_parameters() function. For example, the following code creates a definition of the Socont model structure
and generates the parameter set for the given structure, accounting for the options, such as the number of soil storages.
Within this parameter set, the basic attributes are defined, such as the name, aliases, units, min/max values, etc.

socont = models.Socont(soil_storage_nb=2)
parameters = socont.generate_parameters()

2.3.2 Assigning the parameter values

To set parameter values, the set_values() function of the parameter set can be used with a dictionary as argument.
The dictionary can use the full parameter names (e.g. snowpack:degree_day_factor with no space), or one of the
aliases (e.g., a_snow):

parameters.set_values({'A': 100, 'k_slow': 0.01, 'a_snow': 5})

2.3.3 Parameter constraints

Some constraints can be added between parameters. Some of these are built-in when the parameter set is generated
and are described in the respective model description. For example, in GSM-Socont, the degree day for the snow must
be inferior to the one for the ice (a_snow < a_ice).

Constraints between parameters can be added by the user as follows:

parameters.define_constraint('k_slow_2', '<', 'k_slow_1')

The supported operators are: > (or gt), >= (or ge), < (or lt), <= (or le).

On the contrary, pre-defined constraints can be removed:

parameters.remove_constraint('a_snow', '<', 'a_ice')

2.3.4 Parameter ranges

The parameters are usually generated with a pre-defined range. This range is used to ensure that a provided value falls
within the authorized range and to define the boundaries for the calibration algorithm. The pre-defined ranges can be
changed as follows:

parameters.change_range('a_snow', 2, 5)

2.3. Parameters 7



hydrobricks, Release 0.4.11

2.3.5 Adding data-related parameters

Data-related parameters target for example the spatialisation of the forcing data. As these are not model-dependent,
but data-dependent, they are not pre-defined by the model and need to be added ba the user:

parameters.add_data_parameter('precip_corr_factor', 1, min_value=0.7, max_value=1.3)
parameters.add_data_parameter('precip_gradient', 0.05, min_value=0, max_value=0.2)
parameters.add_data_parameter('temp_gradients', -0.6, min_value=-1, max_value=0)

For the meaning of these parameters and the spatialisation procedures implemented in hydrobricks, refer to the section
on forcing data.

It is also possible, for certain parameters, to define monthly values and ranges:

parameters.add_data_parameter(
'temp_gradients',
[-0.6, -0.6, -0.6, -0.6, -0.7, -0.7, -0.8, -0.8, -0.8, -0.7, -0.7, -0.6],
min_value=[-0.8, -0.8, -0.8, -0.8, -0.8, -0.8, -0.8, -0.8, -0.8, -0.8, -0.8, -0.8],
max_value=[-0.3, -0.3, -0.3, -0.3, -0.3, -0.3, -0.3, -0.3, -0.3, -0.3, -0.3, -0.3])

2.4 Forcing data

The meteorological data is handled by the Forcing class. It handles the spatialization of the weather data to create
per-unit time series. Therefore, when creating an instance of this class, the hydro units must be provided:

forcing = hb.Forcing(hydro_units)

The data, for example station time series, can the be loaded from csv files. Multiple files can be loaded successively,
or a single file can contain different variables (as different columns). One needs to specify which column contains the
dates, their format, and which column header represent what kind of variable. For example (more information in the
Python API):

forcing.load_from_csv(
'path/to/forcing.csv', column_time='Date', time_format='%d/%m/%Y',
content={'precipitation': 'precip(mm/day)', 'temperature': 'temp(C)',

'pet': 'pet_sim(mm/day)'})

A csv file containing forcing data can look like the following example:

Listing 2: Example of a csv file containing forcing data.

Date,precip(mm/day),temp(C),sunshine_dur(h),pet_sim(mm/day)
01/01/1981,8.24,-0.98,0.42,0.58
02/01/1981,4.02,-3.35,0.08,0
03/01/1981,22.27,0.96,0.44,0.95
04/01/1981,28.85,-2.11,0.08,0
05/01/1981,8.89,-5.62,0.07,0.06
06/01/1981,17.49,-4.72,0.09,0
07/01/1981,8.26,-8.58,0.14,0
08/01/1981,0.14,-11.47,81.73,0
09/01/1981,0.91,-7.37,0.1,0.05
10/01/1981,0.54,-3.23,0.09,0
11/01/1981,0.02,-4.57,1.94,0

(continues on next page)

8 Chapter 2. The basics



hydrobricks, Release 0.4.11

(continued from previous page)

12/01/1981,2.28,-4.01,69.95,0
13/01/1981,7.03,-6.39,0.04,0
14/01/1981,9.68,-7.54,73.98,0
15/01/1981,16.23,-3.95,0.23,0.01
16/01/1981,2.77,-7.28,0.18,0.19
17/01/1981,6.49,-1.57,1.29,0.19
18/01/1981,5.53,-3.7,0.07,0
...

2.4.1 Spatialization

The spatialization operation needs to be specified to generate per-unit timeseries. This definition needs information on
the variable, the method to use and its parameters:

forcing.define_spatialization(
variable='temperature', method='additive_elevation_gradient',
ref_elevation=1250, gradient=-0.6)

As we might also want to calibrate the parameters for such operations, these can also be specified as a reference to a
parameter instead of a fixed value. In such case, one must add a data parameter as in the following example:

forcing.define_spatialization(
variable='temperature', method='additive_elevation_gradient',
ref_elevation=1250, gradient='param:temp_gradients')

parameters.add_data_parameter('temp_gradients', -0.6, min_value=-1, max_value=0)

The variables supported so far are: temperature, precipitation, pet. The methods and parameters are described
in the Python API .

2.5 Running the model

Once the hydro units, parameters and forcing defined, the model can be set up and run:

socont.setup(spatial_structure=hydro_units, output_path='/path/to/dir',
start_date='1981-01-01', end_date='2020-12-31')

socont.run(parameters=parameters, forcing=forcing)

Then, the outlet discharge (in mm/d) can be retrieved:

sim_ts = socont.get_outlet_discharge()

More outputs can be extracted and saved to a netCDF file for further analysis:

socont.dump_outputs('/output/dir/')

The state variables can be initialized using the initialize_state_variables() function between the setup() and
the run() functions. The initialization runs the model for the given period and saves the final state variables. These
values are then used as initial state variables for the next run:

2.5. Running the model 9



hydrobricks, Release 0.4.11

socont.initialize_state_variables(parameters=parameters, forcing=forcing)
socont.run(parameters=parameters, forcing=forcing)

When the model is executed multiple times successively, it clears its previous states. When the states initialization
provided by initialize_state_variables() has been used, the model resets its state variables to these saved
values.

2.5.1 Evaluation

Some metrics can be computed by providing the observation time series (in mm/d):

# Preparation of the obs data
obs = hb.Observations()
obs.load_from_csv('/path/to/obs.csv', column_time='Date', time_format='%d/%m/%Y',

content={'discharge': 'Discharge (mm/d)'})
obs_ts = obs.data_raw[0]

nse = socont.eval('nse', obs_ts)
kge_2012 = socont.eval('kge_2012', obs_ts)

The metrics are provided by the HydroErr package . All the metrics listed under their website can be used and are
named according to their function names.

2.6 Outputs

The results can be accessed in different ways and with different levels of detail:

1. The direct outputs from the model instance.

2. A dumped netCDF file containing more details for each hydro unit.

3. Other outputs such as the spatialized forcing or the SPOTPY outputs.

2.6.1 Direct outputs

Some outputs from the model instance are available after a model run as long as the Python session is still alive. The
first one is the discharge time series at the outlet, provided by get_outlet_discharge():

sim_ts = model.get_outlet_discharge()

Some outputs provide integrated values over the simulation period:

• get_total_outlet_discharge(): Integrated discharge at the outlet

• get_total_et(): Integrated ET

• get_total_water_storage_changes(): Changes in all water reservoirs between the beginning of the period
and the end.

• get_total_snow_storage_changes(): Changes in snow storage between the beginning of the period and
the end.

10 Chapter 2. The basics

https://hydroerr.readthedocs.io
https://hydroerr.readthedocs.io/en/stable/list_of_metrics.html


hydrobricks, Release 0.4.11

2.6.2 Dumped netCDF file

A detailed netCDF file can be dumped with model.dump_outputs('some/path'). The content of the file depends
on the option record_all provided at model creation. When True, all fluxes and states are recorded, which slows
down the model execution.

The file has the following dimensions:

• time: The temporal dimension

• hydro_units: The hydro units (e.g., elevation bands)

• aggregated_values: Elements recorded at the catchment scale (lumped)

• distributed_values: Elements recorded at each hydro unit ([semi-]distributed)

• land_covers: The different land covers

It contains three important global attributes:

• labels_aggregated: The labels of the lumped elements (fluxes and states)

• labels_distributed: The labels of the distributed elements (fluxes and states)

• labels_land_covers: The labels of the land covers

For example, for the GSM-Socont model with two different glacier types provides the following attributes:

labels_aggregated =
"glacier-area-rain-snowmelt-storage:content",
"glacier-area-rain-snowmelt-storage:outflow:output",
"glacier-area-icemelt-storage:content",
"glacier-area-icemelt-storage:outflow:output",
"outlet";

labels_distributed =
"ground:content",
"ground:infiltration:output",
"ground:runoff:output",
"glacier-ice:content",
"glacier-ice:outflow-rain-snowmelt:output",
"glacier-ice:melt:output",
"glacier-debris:content",
"glacier-debris:outflow-rain-snowmelt:output",
"glacier-debris:melt:output",
"ground-snowpack:content",
"ground-snowpack:snow",
"ground-snowpack:melt:output",
"glacier-ice-snowpack:content",
"glacier-ice-snowpack:snow",
"glacier-ice-snowpack:melt:output",
"glacier-debris-snowpack:content",
"glacier-debris-snowpack:snow",
"glacier-debris-snowpack:melt:output",
"slow-reservoir:content",
"slow-reservoir:et:output",
"slow-reservoir:outflow:output",
"slow-reservoir:percolation:output",
"slow-reservoir:overflow:output",

(continues on next page)

2.6. Outputs 11



hydrobricks, Release 0.4.11

(continued from previous page)

"slow-reservoir-2:content",
"slow-reservoir-2:outflow:output",
"surface-runoff:content",
"surface-runoff:outflow:output";

labels_land_covers =
"ground",
"glacier-ice",
"glacier-debris";

Then, it provides the following variables:

• time (1D): The dates as Modified Julian Dates (days since 1858-11-17 00:00).

• hydro_units_ids (1D): The IDs of the hydro units.

• hydro_units_areas (1D): The area of the hydro units.

• sub_basin_values (2D): The time series of the aggregated elements (c.f. labels_aggregated)

• hydro_units_values (2D): the time series of the distributed elements (c.f. labels_distributed). Please not here
the differences between:

– the fluxes (mm), i.e. output elements are already weighted by the land cover fraction and the relative hydro
unit area. Thus, these elements can be directly summed over all hydro units to obtain the total contribution
of a given component (e.g., ice melt), even when the hydro units have different areas.

– the state variables (mm) such as content or snow elements represent the water stored in the respective
reservoirs. In this case, this value is not weighted and cannot be summed over the catchment, but must be
weighted by the land cover fraction and the relative hydro unit area.

• land_cover_fractions (2D, optional): the temporal evolution of the land cover fractions.

2.6.3 Others

Some other outputs are available:

• Dumbed forcing: the forcing object can also be saved as a netCDF file using the forcing.create_file(). It
thus contains the spatialized forcing time series.

• During the calibration procedure, SPOTPY saves all assessments in csv or sql tables.

12 Chapter 2. The basics



CHAPTER

THREE

MODELS

The only model structure implemented so far is GSM-Socont.

3.1 Common options

All models have the following options that can be provided at model creation:

• solver: choice of the solver to use; the options are: heun_explicit (default), runge_kutta, and
euler_explicit.

• record_all (default False): when True, the model will record all fluxes and state values for each time step.
This slows down the computations and create large output files. Therefore, it should not be enabled during the
calibration phase, but only when one needs to analyse the behaviour of the model in details. When False, the
model will output the catchment discharge and some selected timeseries.

• land_cover_types: a list of the land cover types to use (e.g., glacier). See the section on the spatial structure.

• land_cover_names: a list of the land cover names to use. Each element must match the land cover types
explained above. The names are used in the model to distinguish similar land cover types, for example when
using a bare-ice glacier and a debris-covered glacier. See the section on the spatial structure.

For example:

socont = models.Socont(solver="heun_explicit", record_all=False)

3.2 GSM-Socont

GSM-Socont is a conceptual glacio-hydrological model described in Schaefli2005.

Some basic properties are given in the following table.

Table 1: Properties of the GSM-Socont model

Spatial structure semi-lumped (elevation bands)
Time step daily

13



hydrobricks, Release 0.4.11

3.2.1 Specific options

The implemented GSM-Socont version comes with some options:

• soil_storage_nb: 1 or 2. This is the number of soil reservoirs to consider (the second one represents the
baseflow).

• surface_runoff: socont_runoff (the original non-linear quick reservoir) or linear_storage (a classic
linear storage).

3.2.2 Parameters

It has the parameters listed below.

14 Chapter 3. Models



hydrobricks, Release 0.4.11

Table 2: Parameters of the GSM-Socont model

Com-
ponent

Name Def.
value,
range

Unit Comments

Precip-
itation
(snow/rain
transi-
tion)

prec_t_start

0
[-
2,
2]

°C

Temperature below which precipitation is 100% snow. The snow/rain transition
is linear between transition_start and transition_end
Optional parameter.
Full name: snow_rain_transition: transition_start

. . . prec_t_end

2
[0,
4]

°C

Temperature above which precipitation is 100% liquid.
Optional parameter.
Full name: snow_rain_transition: transition_end

Snow a_snow

–
[1,
12]

mm/d/°C

Degree day snow melting factor. asnow in Schaefli2005
Full name: snowpack: degree_day_factor

. . . melt_t_snow

0
[0,
5]

°C

Temperature above which the snow starts to melt.
Optional parameter.
Full name: snowpack: melting_temperature

Glacier a_ice
(single
type),
a_ice_<name>,
a_ice_<i>

–
[5,
20]

mm/d/°C

With <name> being the provided name of the land cover (e.g. glacier_debris)
and <i> the number of similar land cover provided.
For example: a_ice_glacier_debris or a_ice_1.
Degree day ice melting factor. aice in Schaefli2005
Full name: <name>: degree_day_factor

. . . melt_t_ice

0
[0,
5]

°C

Temperature above which the ice starts to melt.
Optional parameter.
Full name: <name>: melting_temperature, with <name> being the provided
name of the land cover (e.g. glacier_debris)

Glacier
area
lumped
reser-
voir

k_snow

–

[0.05,
0.25]

1/d

Response factor for the glacier area lumped reservoir receiving rain and
snowmelt water. Similar to ksnow in Schaefli2005, but different units.
Full name: glacier_area_rain_snowmelt_storage: response_factor

. . . k_ice

–

[0.05,
1]

1/d

Response factor for the glacier area lumped reservoir receiving ice melt water.
Similar to kice in Schaefli2005, but different units.
Full name: glacier_area_icemelt_storage: response_factor

Quick
runoff
(non-
linear
version)

beta

–

[100,
30000]

m^(4/3)/s

Parameter to calibrate.
Full name: surface_runoff: runoff_coefficient

. . . J

–
[0,
90]

°

Mean slope of the catchment. Should be based on data.
Full name: surface_runoff: slope

Quick
runoff
(linear
version)

k_quick

–

[0.05,
1]

1/d

Response factor for the quick reservoir.
Full name: surface_runoff: response_factor

Slow
reser-
voir

A

–

[10,
3000]

mm

Maximum storage capacity of the reservoir.
Full name: slow_reservoir: capacity

. . . k_slow,
k_slow_1 –

[0.001,
1]

1/d

Response factor for the slow reservoir. Same as k in Schaefli2005, but different
units.
Full name: slow_reservoir: response_factor

Base-
flow
(op-
tional)

percol

–
[0,
10]

mm/d

Percolation rate from the first slow reservoir to the baseflow reservoir
Full name: slow_reservoir: percolation_rate

. . . k_slow_2

–

[0.001,
1]

1/d

Response factor for the baseflow reservoir.
Full name: slow_reservoir_2: response_factor

3.2. GSM-Socont 15



hydrobricks, Release 0.4.11

The pre-defined constraints on the parameters are defined below.

3.3 References

16 Chapter 3. Models



CHAPTER

FOUR

CALIBRATION

4.1 Calibration/analysis using SPOTPY

The calibration and sensitivity analyses are performed by the SPOTPY package. The links to SPOTPY are provided
by hydrobricks so that it can be used directly.

As we might not want to calibrate all parameters, those that can change have to be specified in the parameters instance
(see parameters):

parameters.allow_changing = ['a_snow', 'k_quick', 'A', 'k_slow_1', 'percol',
'k_slow_2', 'precip_corr_factor']

Then, an instance of the SPOTPY setup can be created by providing the model instance, the parameters, the forcing, the
observation time series, a warmup duration (period that will not be used for the evaluation; in days), and the objective
function to use:

spot_setup = hb.SpotpySetup(socont, parameters, forcing, obs, warmup=365,
obj_func='mse')

SPOTPY only maximizes the metric value. Thus, when the metric needs to be minimized, we need to invert the
objective function:

spot_setup = hb.SpotpySetup(socont, parameters, forcing, obs, warmup=365,
obj_func='kge_2012', invert_obj_func=True)

Once the setup defined, one can use any SPOTPY algorithm. For example, an optimization using the SCE-UA algorithm
can be performed:

# Select number of maximum repetitions and run spotpy
sampler = spotpy.algorithms.sceua(spot_setup, dbname='socont_SCEUA', dbformat='csv')
max_rep = 10000
sampler.sample(max_rep)

Similarly, a Monte-Carlo analysis can be performed:

sampler = spotpy.algorithms.mc(spot_setup, dbname='socont_MC', dbformat='csv',
save_sim=False)

sampler.sample(10000)

Then, the SPOTPY results can be loaded for analysis:

17

https://spotpy.readthedocs.io/en/latest/
https://spotpy.readthedocs.io/en/latest/Algorithm_guide/


hydrobricks, Release 0.4.11

# Load the results
results = sampler.getdata()

# Plot parameter interaction
spotpy.analyser.plot_parameterInteraction(results)
plt.tight_layout()
plt.show()

# Plot posterior parameter distribution
posterior = spotpy.analyser.get_posterior(results, percentage=10)
spotpy.analyser.plot_parameterInteraction(posterior)
plt.tight_layout()
plt.show()

4.2 Prior distributions

The default prior distribution is a uniform distribution in the range provided by the min/max parameter values. The
prior distribution can be changed before the calibration/analysis using the set_prior() function on the parameters
instance:

parameters.set_prior('a_snow', spotpy.parameter.Normal(mean=4, stddev=2))

Prebuild parameter distribution functions provided by SPOTPY: Uniform, Normal, logNormal, Chisquare, Exponential,
Gamma, Wald, Weilbull.

18 Chapter 4. Calibration



CHAPTER

FIVE

ADVANCED FEATURES

5.1 Land cover evolution

The land cover types in hydrobricks are defined by the user (see the hydro units section). Each hydro unit is thus
internally defined by a total area and fractional land covers. These land covers can have a dynamic evolution, externally
driven. One can provide the model with a timeseries of dates and new land cover areas, such as:

changes = behaviours.BehaviourLandCoverChange()
changes.load_from_csv(

'/path/to/surface_changes_glacier_debris.csv',
hydro_units, area_unit='km2', match_with='elevation'

)
model.add_behaviour(changes)

The definition of a land cover evolution does not replace the original definition of the hydro units, which need to be
also provided to the function. The areas provided in the definition of the hydro units are the starting point of the model,
and these changes will be enforced in due time. However, if some changes are defined for dates prior to the start of
the modelling period, these changes will also be applied. The function changes.load_from_csv() can be called
multiple times for different files. The corresponding csv file must contain the name of the land cover to change on
the first row (for example here glacier_debris), the dates of these changes on the second row, and then the change
time series. These changes list all hydro units that need to change; those that do not need to change should not be
listed in the file. There are two ways to identify the hydro units: by elevation (match_with='elevation') or by ID
(match_with='id'). In the following example, these changes start with the unit elevation and contain the time series
of the area (here in km2) for every date given above.

Listing 1: Example of a csv file containing a land cover evolution.

bands,glacier_debris,glacier_debris,glacier_debris,glacier_debris,glacier_debris,glacier_
→˓debris,glacier_debris,glacier_debris,glacier_debris,glacier_debris,glacier_debris,
→˓glacier_debris,glacier_debris,glacier_debris,glacier_debris,glacier_debris,glacier_
→˓debris
,01/08/2020,01/08/2025,01/08/2030,01/08/2035,01/08/2040,01/08/2045,01/08/2050,01/08/2055,
→˓01/08/2060,01/08/2065,01/08/2070,01/08/2075,01/08/2080,01/08/2085,01/08/2090,01/08/
→˓2095,01/08/2100
4274,0.013,0.003,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
4310,0.019,0.009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
4346,0.052,0.042,0.032,0.022,0.012,0.002,0,0,0,0,0,0,0,0,0,0,0
4382,0.072,0.062,0.052,0.042,0.032,0.022,0.012,0.002,0,0,0,0,0,0,0,0,0
4418,0.129,0.119,0.109,0.099,0.089,0.079,0.069,0.059,0.049,0.039,0.029,0.019,0.009,0,0,0,
→˓0
4454,0.252,0.242,0.232,0.222,0.212,0.202,0.192,0.182,0.172,0.162,0.152,0.142,0.132,0.122,

(continues on next page)

19



hydrobricks, Release 0.4.11

(continued from previous page)

→˓0.112,0.102,0.092
4490,0.288,0.278,0.268,0.258,0.248,0.238,0.228,0.218,0.208,0.198,0.188,0.178,0.168,0.158,
→˓0.148,0.138,0.128
4526,0.341,0.331,0.321,0.311,0.301,0.291,0.281,0.271,0.261,0.251,0.241,0.231,0.221,0.211,
→˓0.201,0.191,0.181
4562,0.613,0.603,0.593,0.583,0.573,0.563,0.553,0.543,0.533,0.523,0.513,0.503,0.493,0.483,
→˓0.473,0.463,0.453
4598,0.648,0.638,0.628,0.618,0.608,0.598,0.588,0.578,0.568,0.558,0.548,0.538,0.528,0.518,
→˓0.508,0.498,0.488
4634,0.618,0.608,0.598,0.588,0.578,0.568,0.558,0.548,0.538,0.528,0.518,0.508,0.498,0.488,
→˓0.478,0.468,0.458
4670,0.478,0.468,0.458,0.448,0.438,0.428,0.418,0.408,0.398,0.388,0.378,0.368,0.358,0.348,
→˓0.338,0.328,0.318
4706,0.306,0.296,0.286,0.276,0.266,0.256,0.246,0.236,0.226,0.216,0.206,0.196,0.186,0.176,
→˓0.166,0.156,0.146
4742,0.338,0.328,0.318,0.308,0.298,0.288,0.278,0.268,0.258,0.248,0.238,0.228,0.218,0.208,
→˓0.198,0.188,0.178
4778,0.199,0.189,0.179,0.169,0.159,0.149,0.139,0.129,0.119,0.109,0.099,0.089,0.079,0.069,
→˓0.059,0.049,0.039
4814,0.105,0.095,0.085,0.075,0.065,0.055,0.045,0.035,0.025,0.015,0.005,0,0,0,0,0,0
4850,0.051,0.041,0.031,0.021,0.011,0.001,0,0,0,0,0,0,0,0,0,0,0
4886,0.019,0.009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
4922,0.008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
4958,0.003,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

There is no need to specify the corresponding changes in the generic ground land cover as it will be automatically
computed to preserve the total hydro unit area.

20 Chapter 5. Advanced features



CHAPTER

SIX

UPGRADE GUIDE

6.1 v0.4 to v0.5

Breaking change:

• Removing hyphens for underscores. Any component (including land cover elements) have to use underscores
and not hyphens (e.g., glacier_ice instead of glacier-ice, slow_reservoir instead of slow-reservoir).

21



hydrobricks, Release 0.4.11

22 Chapter 6. Upgrade guide



CHAPTER

SEVEN

API REFERENCE

7.1 Models

7.1.1 Base model

7.1.2 Socont

class hydrobricks.models.socont.Socont(name='socont', **kwargs)
Bases: Model

Socont model implementation

generate_parameters()

7.2 Components

7.2.1 HydroUnits

class hydrobricks.HydroUnits(land_cover_types=None, land_cover_names=None)
Bases: object

Class for the hydro units

create_file(path)
Create a file containing the hydro unit properties. Such a file can be used in the command-line version of
hydrobricks.

Parameters
path (str) – Path of the file to create.

get_ids()

Get the hydro unit ids.

load_from_csv(path, area_unit, column_elevation=None, column_area=None, column_fractions=None,
columns_areas=None)

Read hydro units properties from csv file.

Parameters

• path (str|Path ) – Path to the csv file containing hydro units data.

• area_unit (str) – Unit for the area values: “m2” or “km2”

23



hydrobricks, Release 0.4.11

• column_elevation (str) – Column name containing the elevation values in [m] (op-
tional).

• column_area (str) – Column name containing the area values (optional).

• column_fractions (dict) – Column name containing the area fraction values for each
land cover (optional).

• columns_areas (dict) – Column name containing the area values for each land cover
(optional).

7.2.2 ParameterSet

class hydrobricks.ParameterSet

Bases: object

Class for the parameter sets

add_data_parameter(name, value=None, min_value=None, max_value=None, unit=None)
Add a parameter related to the data.

Parameters

• name (str) – The name of the parameter.

• value (float/list) – The parameter value.

• min_value (float/list) – Minimum value allowed for the parameter.

• max_value (float/list) – Maximum value allowed for the parameter.

• unit (str) – The unit of the parameter.

property allow_changing

change_range(parameter, min_value, max_value)
Change the value range of a parameter.

Parameters

• parameter (str) – Name (or alias) of the parameter

• min_value – New minimum value

• max_value – New maximum value

constraints_satisfied()→ bool
Check if the constraints between parameters are satisfied.

Return type
True is constraints are satisfied, False otherwise.

create_file(directory, name, file_type='both')
Create a configuration file containing the parameter values.

Such a file can be used when using the command-line version of hydrobricks. It contains the model param-
eter values.

Parameters

• directory (str) – The directory to write the file.

• name (str) – The name of the generated file.

24 Chapter 7. API reference



hydrobricks, Release 0.4.11

• file_type (file_type) – The type of file to generate: ‘json’, ‘yaml’, or ‘both’.

define_constraint(parameter_1, operator, parameter_2)
Defines a constraint between 2 parameters (e.g., paramA > paramB)

Parameters

• parameter_1 (str) – The name of the first parameter.

• operator (str) – The operator (e.g. ‘<=’).

• parameter_2 (str) – The name of the second parameter.

Examples

parameter_set.define_constraint(‘paramA’, ‘>=’, ‘paramB’)

define_parameter(component, name, unit=None, aliases=None, min_value=None, max_value=None,
default_value=None, mandatory=True)

Define a parameter by setting its properties.

Parameters

• component (str) – The component (brick) name to which the parameter refer (e.g., snow-
pack, glacier, surface-runoff).

• name (str) – The name of the parameter in the C++ code of hydrobricks (e.g., de-
gree_day_factor, response_factor).

• unit (str) – The unit of the parameter.

• aliases (list) – Aliases to the parameter name, such as names used in other implemen-
tations (e.g., kgl, an). Aliases must be unique.

• min_value (float/list) – Minimum value allowed for the parameter.

• max_value (float/list) – Maximum value allowed for the parameter.

• default_value (float/list) – The parameter default value.

• mandatory (bool) – If the parameter needs to be defined or if it can silently use the default
value.

get(name)
Get the value of a parameter by name.

Parameters
name (str) – The name of the parameter.

Return type
The parameter value.

get_for_spotpy()

Get the parameters to assess ready to be used in spotpy.

Return type
A list of the parameters as spotpy objects.

get_model_parameters()

Get the model-only parameters (excluding data-related parameters).

7.2. Components 25



hydrobricks, Release 0.4.11

has(name)
Check if a parameter exists.

Parameters
name (str) – The name of the parameter.

Return type
True if found, False otherwise.

is_for_forcing(parameter_name)
Check if the parameter relates to forcing data.

Parameters
parameter_name – The name of the parameter.

Return type
True if relates to forcing data, False otherwise.

list_constraints()

List the constraints currently defined.

needs_random_forcing()

Check if one of the parameters to assess involves the meteorological data.

Return type
True if one of the parameters to assess involves the meteorological data.

range_satisfied()→ bool
Check if the parameter value ranges are satisfied.

Return type
True is ranges are satisfied, False otherwise.

remove_constraint(parameter_1, operator, parameter_2)
Removes a constraint between 2 parameters (e.g., paramA > paramB)

Parameters

• parameter_1 (str) – The name of the first parameter.

• operator (str) – The operator (e.g. ‘<=’).

• parameter_2 (str) – The name of the second parameter.

Examples

parameter_set.remove_constraint(‘paramA’, ‘>=’, ‘paramB’)

set_prior(parameter, prior)
Change the value range of a parameter.

Parameters

• parameter (str) – Name (or alias) of the parameter

• prior (spotpy.parameter) – The prior distribution (instance of spotpy.parameter)

set_random_values(parameters)
Set the provided parameter to random values.

26 Chapter 7. API reference



hydrobricks, Release 0.4.11

Parameters
parameters (list) – The name or alias of the parameters to set to random values. Example:
[‘kr’, ‘A’]

Return type
A dataframe with the assigned parameter values.

set_values(values, check_range=True, allow_adapt=False)
Set the parameter values.

Parameters

• values (dict) – The values must be provided as a dictionary with the parameter name
with the related component or one of its aliases as the key. Example: {‘k’: 32, ‘A’: 300}
or {‘slow-reservoir:capacity’: 300}

• check_range (bool) – Check that the parameter value falls into the allowed range.

• allow_adapt (bool) – Allow the parameter values to be adapted to enforce defined con-
straints (e.g.: min, max).

7.2.3 Forcing

class hydrobricks.Forcing(hydro_units)
Bases: TimeSeries

Class for forcing data

apply_defined_spatialization(parameters, parameters_to_apply=None)
Apply the spatialization operations defined by define_spatialization().

Parameters

• parameters (ParameterSet) – The parameter object instance.

• parameters_to_apply (list) – A list of parameters to apply. The spatialization will
only be applied for the variables related to parameters in this list. If None, all variables are
spatialized.

create_file(path, max_compression=False)
Read hydro units properties from csv file.

Parameters

• path (str) – Path of the file to create.

• max_compression (bool) – Option to allow maximum compression for data in file.

define_spatialization(**kwargs)
Define the spatialization operations.

Parameters
kwargs – All the parameters needed by the function spatialize() to perform the spatialization
for the given forcing variable.

get_total_precipitation()

spatialize(variable, method='constant', ref_elevation=None, gradient=0, gradient_1=0, gradient_2=0,
elevation_threshold=None, correction_factor=None)

Spatializes the provided variable to all hydro units using the defined method.

7.2. Components 27



hydrobricks, Release 0.4.11

Parameters

• variable (str) – Name of the variable to spatialize.

• method (str) – Name of the method to use. Can be: * constant: the same value will be
used * additive_elevation_gradient: use of an additive elevation gradient that

is either constant or changes for every month. Parameters: ‘ref_elevation’, ‘gradient’.

– multiplicative_elevation_gradient: use of a multiplicative elevation gradient that is either
constant or changes for every month. Parameters: ‘ref_elevation’, ‘gradient’.

– multiplicative_elevation_threshold_gradients: same as multiplica-
tive_elevation_gradient, but with an elevation threshold with a gradient below
and a gradient above. Parameters: ‘ref_elevation’, ‘gradient’, ‘gradient_2’, ‘eleva-
tion_threshold’

• ref_elevation (float) – Reference elevation. For method(s): ‘elevation_gradient’

• gradient (float/list) – Gradient of the variable to apply per 100m (e.g., °C/100m).
Can be a unique value or a list providing a value for every month. For method(s): ‘eleva-
tion_gradient’, ‘elevation_multi_gradients’

• gradient_1 (float/list) – Same as parameter ‘gradient’

• gradient_2 (float/list) – Gradient of the variable to apply per 100m (e.g., °C/100m)
for the units above the elevation threshold defined by ‘elevation_threshold’. For method(s):
‘elevation_multi_gradients’

• elevation_threshold (int/float) – Threshold elevation to switch from gradient to
gradient_2

• correction_factor (float) – Correction factor to apply to the precipitation data before
spatialization

spatialize_pet(ref_elevation=None, gradient=0)
Spatializes the PET using a gradient that is either constant or changes for every month.

Parameters

• ref_elevation (float) – Elevation of the reference station.

• gradient (float/list) – Gradient [mm/100m] to compute the PET for every hydro unit.
Can be a unique value or a list providing a value for every month.

spatialize_precipitation(ref_elevation, gradient=None, gradient_1=None, gradient_2=None,
elevation_threshold=None, correction_factor=None)

Spatializes the precipitation using a single gradient for the full elevation range or a two-gradients approach
with an elevation threshold.

Parameters

• ref_elevation (float) – Elevation of the reference station.

• gradient (float) – Precipitation gradient (ratio) per 100 m of altitude.

• gradient_1 (float) – Same as parameter ‘gradient’

• gradient_2 (float) – Precipitation gradient (ratio) per 100 m of altitude for the units
above the threshold elevation (optional).

• elevation_threshold (float) – Threshold to switch from gradient 1 to gradient 2 (op-
tional).

28 Chapter 7. API reference



hydrobricks, Release 0.4.11

• correction_factor (float) – Correction factor to apply to the precipitation data before
spatialization

spatialize_temperature(ref_elevation, lapse)
Spatializes the temperature using a temperature lapse that is either constant or changes for every month.

Parameters

• ref_elevation (float) – Elevation of the reference station.

• lapse (float/list) – Temperature lapse [°C/100m] to compute the temperature for every
hydro unit. Can be a unique value or a list providing a value for every month.

7.2.4 Observations

class hydrobricks.Observations

Bases: TimeSeries

Class for forcing data

7.3 Submodules

7.3.1 hydrobricks.plotting module

hydrobricks.plotting.plot_hydro_units_values(results, index, units, units_labels)

hydrobricks.plotting.plot_precip_per_unit(units_precip, hydro_units)

7.3.2 hydrobricks.utils module

class hydrobricks.utils.Timer(text=None)
Bases: object

Timer to time code execution. Based on: https://pypi.org/project/codetiming/

start()

Start a new timer.

stop(show_time=True)
Stop the timer, and report the elapsed time.

hydrobricks.utils.area_in_m2(area, unit)

hydrobricks.utils.date_as_mjd(date)

hydrobricks.utils.days_to_hours_mins(days)
Transform a number of days to hours and minutes

hydrobricks.utils.dump_config_file(content, directory, name, file_type='yaml')

hydrobricks.utils.jd_to_date(jd)
Transform julian date numbers to year, month and day (array-based). From https://gist.github.com/jiffyclub/
1294443

7.3. Submodules 29

https://pypi.org/project/codetiming/
https://gist.github.com/jiffyclub/1294443
https://gist.github.com/jiffyclub/1294443


hydrobricks, Release 0.4.11

hydrobricks.utils.mjd_to_datetime(mjd)
Transform modified julian dates to datetime instances (array-based).

hydrobricks.utils.validate_kwargs(kwargs, allowed_kwargs)
Checks the keyword arguments against a set of allowed keys.

7.4 Preprocessing

7.4.1 Compute elevation bands

class hydrobricks.preprocessing.catchment.Catchment(outline=None)
Bases: object

Creation of catchment-related data

extract_dem(dem_path)→ bool
Extract the DEM data for the catchment. Does not handle change in coordinates.

Parameters
dem_path (str|Path ) – Path of the DEM file.

Return type
True if successful, False otherwise.

get_elevation_bands(method='isohypse', number=100, distance=50)
Construction of the elevation bands based on the chosen method.

Parameters

• method (str) – The method to build the elevation bands: ‘isohypse’ = fixed contour inter-
vals (provide the ‘distance’ parameter) ‘quantiles’ = quantiles of the catchment area (same
surface; provide the ‘number’ parameter)

• number (int) – Number of bands to create when using the ‘quantiles’ method.

• distance (int) – Distance (m) between the contour lines when using the ‘isohypse’
method.

Return type
A dataframe with the elevation bands.

get_mean_elevation()

Get the catchment mean elevation.

Return type
The catchment mean elevation.

30 Chapter 7. API reference



hydrobricks, Release 0.4.11

7.5 C++ binding

This reference only describes the C++ Python binding. For a full documentation of the C++ code, please refer to the
C++ reference.

hydrobricks Python interface

7.5.1 ModelHydro class

class _hydrobricks.ModelHydro

Bases: pybind11_object

add_behaviour(self: _hydrobricks.ModelHydro, behaviour: Behaviour)→ bool
Adding a behaviour to the model.

add_time_series(self: _hydrobricks.ModelHydro, time_series: _hydrobricks.TimeSeries)→ bool
Adding a time series to the model.

attach_time_series_to_hydro_units(self: _hydrobricks.ModelHydro)→ bool
Attach the time series.

clear_time_series(self: _hydrobricks.ModelHydro)→ None
Clear time series. Use only if the time series were created with ModelHydro::ClearTimeSeries.

create_time_series(self: _hydrobricks.ModelHydro, data_name: str, time:
numpy.ndarray[numpy.float64[m, 1]], ids: numpy.ndarray[numpy.int32[m, 1]], data:
numpy.ndarray[numpy.float64[m, n]])→ bool

Create a time series and add it to the model.

dump_outputs(self: _hydrobricks.ModelHydro, path: str)→ bool
Dump the model outputs to file.

forcing_loaded(self: _hydrobricks.ModelHydro)→ bool
Check if the forcing data were loaded.

get_behaviour_items_nb(self: _hydrobricks.ModelHydro)→ int
Get the number of behaviour items.

get_behaviours_nb(self: _hydrobricks.ModelHydro)→ int
Get the number of behaviours.

get_outlet_discharge(self: _hydrobricks.ModelHydro)→ numpy.ndarray[numpy.float64[m, 1]]
Get the outlet discharge.

get_total_et(self: _hydrobricks.ModelHydro)→ float
Get the total amount of water lost by evapotranspiration.

get_total_outlet_discharge(self: _hydrobricks.ModelHydro)→ float
Get the outlet discharge total.

get_total_snow_storage_changes(self: _hydrobricks.ModelHydro)→ float
Get the total change in snow storage.

get_total_water_storage_changes(self: _hydrobricks.ModelHydro)→ float
Get the total change in water storage.

7.5. C++ binding 31

https://hydrobricks.github.io/hydrobricks-doc-core/


hydrobricks, Release 0.4.11

init_with_basin(self: _hydrobricks.ModelHydro, model_settings: _hydrobricks.SettingsModel,
basin_settings: _hydrobricks.SettingsBasin)→ bool

Initialize the model and create the sub basin.

is_ok(self: _hydrobricks.ModelHydro)→ bool
Check if the model is correctly set up.

reset(self: _hydrobricks.ModelHydro)→ None
Reset the model before another run.

run(self: _hydrobricks.ModelHydro)→ bool
Run the model.

save_as_initial_state(self: _hydrobricks.ModelHydro)→ None
Save the model state as initial conditions.

update_parameters(self: _hydrobricks.ModelHydro, model_settings: _hydrobricks.SettingsModel)→
None

Update the parameters with the provided values.

7.5.2 SettingsModel class

class _hydrobricks.SettingsModel

Bases: pybind11_object

generate_socont_structure(self: _hydrobricks.SettingsModel, land_cover_types: List[str],
land_cover_names: List[str], soil_storage_nb: int = 1, surface_runoff: str =
'socont_runoff')→ bool

Generate the GSM-SOCONT structure.

log_all(self: _hydrobricks.SettingsModel, log_all: bool = True)→ None
Logging all components.

set_parameter(self: _hydrobricks.SettingsModel, component: str, name: str, value: float)→ bool
Setting one of the model parameter.

set_solver(self: _hydrobricks.SettingsModel, name: str)→ None
Set the solver.

set_timer(self: _hydrobricks.SettingsModel, start_date: str, end_date: str, time_step: int, time_step_unit:
str)→ None

Set the modelling time properties.

7.5.3 SettingsBasin class

class _hydrobricks.SettingsBasin

Bases: pybind11_object

add_hydro_unit(self: _hydrobricks.SettingsBasin, id: int, area: float, elevation: float)→ None
Add a hydro unit to the spatial structure.

add_land_cover(self: _hydrobricks.SettingsBasin, name: str, type: str, fraction: float)→ None
Add a land cover element.

32 Chapter 7. API reference



hydrobricks, Release 0.4.11

7.5.4 SubBasin class

class _hydrobricks.SubBasin

Bases: pybind11_object

init(self: _hydrobricks.SubBasin, spatial_structure: _hydrobricks.SettingsBasin)→ bool
Initialize the basin.

7.5.5 Parameter class

class _hydrobricks.Parameter

Bases: pybind11_object

get_name(self: _hydrobricks.Parameter)→ str
Get the parameter name.

get_value(self: _hydrobricks.Parameter)→ float
Get the parameter value.

property name

set_name(self: _hydrobricks.Parameter, arg0: str)→ None
Set the parameter name.

set_value(self: _hydrobricks.Parameter, arg0: float)→ None
Set the parameter value.

property value

class _hydrobricks.ParameterVariableYearly

Bases: Parameter

set_values(self: _hydrobricks.ParameterVariableYearly, year_start: int, year_end: int, values: List[float])
→ bool

Set the parameter values.

7.5.6 TimeSeries class

class _hydrobricks.TimeSeries

Bases: pybind11_object

static create(data_name: str, time: numpy.ndarray[numpy.float64[m, 1]], ids:
numpy.ndarray[numpy.int32[m, 1]], data: numpy.ndarray[numpy.float64[m, n]])→
_hydrobricks.TimeSeries

7.5. C++ binding 33



hydrobricks, Release 0.4.11

34 Chapter 7. API reference



CHAPTER

EIGHT

INDICES AND TABLES

• genindex

• modindex

35



hydrobricks, Release 0.4.11

36 Chapter 8. Indices and tables



BIBLIOGRAPHY

[Schaefli2005] Schaefli, B., Hingray, B., Niggli, M., & Musy, A. (2005). A conceptual glacio-hydrological model
for high mountainous catchments. Hydrology and Earth System Sciences Discussions, 9(1), 95–109. https:
//doi.org/10.5194/hessd-2-73-2005

37

https://doi.org/10.5194/hessd-2-73-2005
https://doi.org/10.5194/hessd-2-73-2005


hydrobricks, Release 0.4.11

38 Bibliography



PYTHON MODULE INDEX

_
_hydrobricks, 31

h
hydrobricks, 23
hydrobricks.models, 23
hydrobricks.models.socont, 23
hydrobricks.plotting, 29
hydrobricks.preprocessing, 30
hydrobricks.preprocessing.catchment, 30
hydrobricks.utils, 29

39



hydrobricks, Release 0.4.11

40 Python Module Index



INDEX

Symbols
_hydrobricks

module, 31

A
add_behaviour() (_hydrobricks.ModelHydro method),

31
add_data_parameter() (hydrobricks.ParameterSet

method), 24
add_hydro_unit() (_hydrobricks.SettingsBasin

method), 32
add_land_cover() (_hydrobricks.SettingsBasin

method), 32
add_time_series() (_hydrobricks.ModelHydro

method), 31
allow_changing (hydrobricks.ParameterSet property),

24
apply_defined_spatialization() (hydro-

bricks.Forcing method), 27
area_in_m2() (in module hydrobricks.utils), 29
attach_time_series_to_hydro_units() (_hydro-

bricks.ModelHydro method), 31

C
Catchment (class in hydro-

bricks.preprocessing.catchment), 30
change_range() (hydrobricks.ParameterSet method),

24
clear_time_series() (_hydrobricks.ModelHydro

method), 31
constraints_satisfied() (hydrobricks.ParameterSet

method), 24
create() (_hydrobricks.TimeSeries static method), 33
create_file() (hydrobricks.Forcing method), 27
create_file() (hydrobricks.HydroUnits method), 23
create_file() (hydrobricks.ParameterSet method), 24
create_time_series() (_hydrobricks.ModelHydro

method), 31

D
date_as_mjd() (in module hydrobricks.utils), 29

days_to_hours_mins() (in module hydrobricks.utils),
29

define_constraint() (hydrobricks.ParameterSet
method), 25

define_parameter() (hydrobricks.ParameterSet
method), 25

define_spatialization() (hydrobricks.Forcing
method), 27

dump_config_file() (in module hydrobricks.utils), 29
dump_outputs() (_hydrobricks.ModelHydro method),

31

E
extract_dem() (hydro-

bricks.preprocessing.catchment.Catchment
method), 30

F
Forcing (class in hydrobricks), 27
forcing_loaded() (_hydrobricks.ModelHydro

method), 31

G
generate_parameters() (hydro-

bricks.models.socont.Socont method), 23
generate_socont_structure() (_hydro-

bricks.SettingsModel method), 32
get() (hydrobricks.ParameterSet method), 25
get_behaviour_items_nb() (_hydro-

bricks.ModelHydro method), 31
get_behaviours_nb() (_hydrobricks.ModelHydro

method), 31
get_elevation_bands() (hydro-

bricks.preprocessing.catchment.Catchment
method), 30

get_for_spotpy() (hydrobricks.ParameterSet method),
25

get_ids() (hydrobricks.HydroUnits method), 23
get_mean_elevation() (hydro-

bricks.preprocessing.catchment.Catchment
method), 30

41



hydrobricks, Release 0.4.11

get_model_parameters() (hydrobricks.ParameterSet
method), 25

get_name() (_hydrobricks.Parameter method), 33
get_outlet_discharge() (_hydrobricks.ModelHydro

method), 31
get_total_et() (_hydrobricks.ModelHydro method),

31
get_total_outlet_discharge() (_hydro-

bricks.ModelHydro method), 31
get_total_precipitation() (hydrobricks.Forcing

method), 27
get_total_snow_storage_changes() (_hydro-

bricks.ModelHydro method), 31
get_total_water_storage_changes() (_hydro-

bricks.ModelHydro method), 31
get_value() (_hydrobricks.Parameter method), 33

H
has() (hydrobricks.ParameterSet method), 25
hydrobricks

module, 23
hydrobricks.models
module, 23

hydrobricks.models.socont
module, 23

hydrobricks.plotting
module, 29

hydrobricks.preprocessing
module, 30

hydrobricks.preprocessing.catchment
module, 30

hydrobricks.utils
module, 29

HydroUnits (class in hydrobricks), 23

I
init() (_hydrobricks.SubBasin method), 33
init_with_basin() (_hydrobricks.ModelHydro

method), 31
is_for_forcing() (hydrobricks.ParameterSet method),

26
is_ok() (_hydrobricks.ModelHydro method), 32

J
jd_to_date() (in module hydrobricks.utils), 29

L
list_constraints() (hydrobricks.ParameterSet

method), 26
load_from_csv() (hydrobricks.HydroUnits method), 23
log_all() (_hydrobricks.SettingsModel method), 32

M
mjd_to_datetime() (in module hydrobricks.utils), 29

ModelHydro (class in _hydrobricks), 31
module

_hydrobricks, 31
hydrobricks, 23
hydrobricks.models, 23
hydrobricks.models.socont, 23
hydrobricks.plotting, 29
hydrobricks.preprocessing, 30
hydrobricks.preprocessing.catchment, 30
hydrobricks.utils, 29

N
name (_hydrobricks.Parameter property), 33
needs_random_forcing() (hydrobricks.ParameterSet

method), 26

O
Observations (class in hydrobricks), 29

P
Parameter (class in _hydrobricks), 33
ParameterSet (class in hydrobricks), 24
ParameterVariableYearly (class in _hydrobricks), 33
plot_hydro_units_values() (in module hydro-

bricks.plotting), 29
plot_precip_per_unit() (in module hydro-

bricks.plotting), 29

R
range_satisfied() (hydrobricks.ParameterSet

method), 26
remove_constraint() (hydrobricks.ParameterSet

method), 26
reset() (_hydrobricks.ModelHydro method), 32
run() (_hydrobricks.ModelHydro method), 32

S
save_as_initial_state() (_hydro-

bricks.ModelHydro method), 32
set_name() (_hydrobricks.Parameter method), 33
set_parameter() (_hydrobricks.SettingsModel

method), 32
set_prior() (hydrobricks.ParameterSet method), 26
set_random_values() (hydrobricks.ParameterSet

method), 26
set_solver() (_hydrobricks.SettingsModel method), 32
set_timer() (_hydrobricks.SettingsModel method), 32
set_value() (_hydrobricks.Parameter method), 33
set_values() (_hydrobricks.ParameterVariableYearly

method), 33
set_values() (hydrobricks.ParameterSet method), 27
SettingsBasin (class in _hydrobricks), 32
SettingsModel (class in _hydrobricks), 32

42 Index



hydrobricks, Release 0.4.11

Socont (class in hydrobricks.models.socont), 23
spatialize() (hydrobricks.Forcing method), 27
spatialize_pet() (hydrobricks.Forcing method), 28
spatialize_precipitation() (hydrobricks.Forcing

method), 28
spatialize_temperature() (hydrobricks.Forcing

method), 29
start() (hydrobricks.utils.Timer method), 29
stop() (hydrobricks.utils.Timer method), 29
SubBasin (class in _hydrobricks), 33

T
Timer (class in hydrobricks.utils), 29
TimeSeries (class in _hydrobricks), 33

U
update_parameters() (_hydrobricks.ModelHydro

method), 32

V
validate_kwargs() (in module hydrobricks.utils), 30
value (_hydrobricks.Parameter property), 33

Index 43


	Getting started
	The basics
	Model structure
	Spatial structure
	Parameters
	Creating a parameter set
	Assigning the parameter values
	Parameter constraints
	Parameter ranges
	Adding data-related parameters

	Forcing data
	Spatialization

	Running the model
	Evaluation

	Outputs
	Direct outputs
	Dumped netCDF file
	Others


	Models
	Common options
	GSM-Socont
	Specific options
	Parameters

	References

	Calibration
	Calibration/analysis using SPOTPY
	Prior distributions

	Advanced features
	Land cover evolution

	Upgrade guide
	v0.4 to v0.5

	API reference
	Models
	Base model
	Socont

	Components
	HydroUnits
	ParameterSet
	Forcing
	Observations

	Submodules
	hydrobricks.plotting module
	hydrobricks.utils module

	Preprocessing
	Compute elevation bands

	C++ binding
	ModelHydro class
	SettingsModel class
	SettingsBasin class
	SubBasin class
	Parameter class
	TimeSeries class


	Indices and tables
	Bibliography
	Python Module Index
	Index

